0  422275  422283  422289  422293  422299  422301  422305  422311  422313  422319  422325  422329  422331  422335  422341  422343  422349  422353  422355  422359  422361  422365  422367  422369  422370  422371  422373  422374  422375  422377  422379  422383  422385  422389  422391  422395  422401  422403  422409  422413  422415  422419  422425  422431  422433  422439  422443  422445  422451  422455  422461  422469  447090 

1.在实验室中,通常将金属钠保存在

A.水中    B. 煤油中      C. 四氯化碳中   D.汽油中

试题详情

102.(08广东佛山25题)25.我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.

例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).

请你用上面的思想和方法对下面关于圆的问题进行研究:

(1) 如图1,在圆O所在平面上,放置一条直线(和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些(直接写出两个即可)?

(2) 如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心两条直线(与圆O分别交于点A、B与圆O分别交于点C、D).

请你根据所构造的图形提出一个结论,并证明之.

(3) 如图3,其中AB是圆O的直径,AC是弦,D的中点,弦DEAB于点F. 请找出点C和点E重合的条件,并说明理由.

 

(08广东佛山25题解答)解:(1) 弦(图中线段AB)、弧(图中的ACB弧)、弓形、求弓形的面积(因为是封闭图形)等.  (写对一个给1分,写对两个给2分)

(2) 情形1  如图21,AB为弦,CD为垂直于弦AB的直径.  …………………………3分

结论:(垂径定理的结论之一).  …………………………………………………………4分

证明:略(对照课本的证明过程给分).  …………………………………………………7分

情形2  如图22,AB为弦,CD为弦,且ABCD在圆内相交于点P.

结论:.

证明:略.

情形3 (图略)AB为弦,CD为弦,且在圆外相交于点P.

结论:.

证明:略.

情形4  如图23,AB为弦,CD为弦,且ABCD.

结论:  =   .

证明:略.

(上面四种情形中做一个即可,图1分,结论1分,证明3分;

其它正确的情形参照给分;若提出的是错误的结论,则需证明结论是错误的)

(3) 若点C和点E重合,

则由圆的对称性,知点C和点D关于直径AB对称. …………………………………8分

,则.………………………………9分

D是   的中点,所以

.………………………………………………………10分

解得.……………………………………………………………11分

(若求得等也可,评分可参照上面的标准;也可以先直觉猜测点BC是圆的十二等分点,然后说明)

 

试题详情

101.(08山东聊城25题)25.(本题满分12分)如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).

 

(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?

(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;

(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.

(08山东聊城25题解答)(本题满分12分)

解:(1)设正方形的边长为cm,则

.························································································ 1分

解得(不合题意,舍去),

剪去的正方形的边长为1cm.·············································································· 3分

(注:通过观察、验证直接写出正确结果给3分)

(2)有侧面积最大的情况.

设正方形的边长为cm,盒子的侧面积为cm2

的函数关系式为:

.······························································································· 5分

改写为

时,

即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.········ 7分

(3)有侧面积最大的情况.

设正方形的边长为cm,盒子的侧面积为cm2

若按图1所示的方法剪折,则的函数关系式为:

时,.····························· 9分

若按图2所示的方法剪折,则的函数关系式为:

时,.················································································· 11分

比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm时,折成的有盖长方体盒子的侧面积最大,最大面积为cm2

说明:解答题各小题只给了一种解答及评分说明,其他解法只要步骤合理,解答正确,均应给出相应分数.

试题详情

100.(08广东梅州23题)23.本题满分11分.

如图11所示,在梯形ABCD中,已知ABCDADDBAD=DC=CBAB=4.以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系.

(1)求∠DAB的度数及ADC三点的坐标;

(2)求过ADC三点的抛物线的解析式及其对称轴L

(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)

(08广东梅州23题解答)解: (1) DCABAD=DC=CB

 ∠CDB=∠CBD=∠DBA,··············································································· 0.5分

   ∠DAB=∠CBADAB=2∠DBA, ············ 1分

DAB+∠DBA=90DAB=60, ·········· 1.5分

  ∠DBA=30AB=4, DC=AD=2,  ········· 2分

RtAODOA=1,OD=,··························· 2.5分

A(-1,0),D(0, ),C(2, ).  · 4分

(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A(-1,0),B(3,0),

故可设所求为  = (+1)( -3) ······························································ 6分

将点D(0, )的坐标代入上式得, =

所求抛物线的解析式为  =   ·········································· 7分

其对称轴L为直线=1.······················································································ 8分

(3) PDB为等腰三角形,有以下三种情况:

①因直线LDB不平行,DB的垂直平分线与L仅有一个交点P1P1D=P1B

P1DB为等腰三角形;  ················································································· 9分

②因为以D为圆心,DB为半径的圆与直线L有两个交点P2P3DB=DP2DB=DP3P2DBP3DB为等腰三角形;

③与②同理,L上也有两个点P4P5,使得 BD=BP4BD=BP5.  ···················· 10分

由于以上各点互不重合,所以在直线L上,使PDB为等腰三角形的点P有5个.

试题详情

99.(08福建南平26题)26.(14分)

(1)如图1,图2,图3,在中,分别以为边,向外作正三角形,正四边形,正五边形,相交于点

①如图1,求证:

②探究:如图1,    

如图2,    

如图3,    

(2)如图4,已知:是以为边向外所作正边形的一组邻边;是以为边向外所作正边形的一组邻边.的延长相交于点

①猜想:如图4,     (用含的式子表示);

②根据图4证明你的猜想.

(08福建南平26题解答)(1)①证法一:均为等边三角形,

························································································ 2分

··············································· 3分

························································ 4分

.··················································· 5分

证法二:均为等边三角形,

························································································ 2分

························································································ 3分

可由绕着点按顺时针方向旋转得到··································· 4分

.··························································································· 5分

.········································································ 8分(每空1分)

(2)①········································································································ 10分

②证法一:依题意,知都是正边形的内角,

,即.····························· 11分

.·························································································· 12分

······ 13分

········································ 14分

证法二:同上可证  .··························································· 12分

,如图,延长

································ 13分

················· 14分

证法三:同上可证  .··························································· 12分

························································ 13分

········································································ 14分

证法四:同上可证  .··························································· 12分

.如图,连接

.···································· 13分

······························· 14分

注意:此题还有其它证法,可相应评分.

试题详情

98.(08四川资阳24题)24.(本小题满分12分)

如图10,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.

(1)求抛物线的解析式;

(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连结BD,求直线BD的解析式;

(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.

(08四川资阳24题解答)(1) ∵以AB为直径作⊙O′,交y轴的负半轴于点C,

∴∠OCA+∠OCB=90°,

又∵∠OCB+∠OBC=90°,

∴∠OCA=∠OBC,

又∵∠AOC= ∠COB=90°,

∴ΔAOC∽ ΔCOB,························································································ 1分

又∵A(–1,0),B(9,0),

,解得OC=3(负值舍去).

∴C(0,–3),

······················································································································ 3分

设抛物线解析式为y=a(x+1)(x–9),

∴–3=a(0+1)(0–9),解得a=

∴二次函数的解析式为y=(x+1)(x–9),即y=x2x–3.···························· 4分

(2) ∵AB为O′的直径,且A(–1,0),B(9,0),

∴OO′=4,O′(4,0),····················································································· 5分

∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,

∴∠BCD=∠BCE=×90°=45°,

连结O′D交BC于点M,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=AB=5.

∴D(4,–5).································································································· 6分

∴设直线BD的解析式为y=kx+b(k≠0)

··························································· 7分

解得

∴直线BD的解析式为y=x–9.····································· 8分

(3) 假设在抛物线上存在点P,使得∠PDB=∠CBD,

解法一:设射线DP交⊙O′于点Q,则

分两种情况(如答案图1所示):

①∵O′(4,0),D(4,–5),B(9,0),C(0,–3).

∴把点C、D绕点O′逆时针旋转90°,使点D与点B重合,则点C与点Q1重合,

因此,点Q1(7,–4)符合

∵D(4,–5),Q1(7,–4),

∴用待定系数法可求出直线DQ1解析式为y=x–.··································· 9分

解方程组

∴点P1坐标为(),[坐标为()不符合题意,舍去].

······················································································································ 10分

②∵Q1(7,–4),

∴点Q1关于x轴对称的点的坐标为Q2(7,4)也符合

∵D(4,–5),Q2(7,4).

∴用待定系数法可求出直线DQ2解析式为y=3x–17.······································ 11分

解方程组

∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].

······················································································································ 12分

∴符合条件的点P有两个:P1(),P2(14,25).

解法二:分两种情况(如答案图2所示):

①当DP1∥CB时,能使∠PDB=∠CBD.

∵B(9,0),C(0,–3).

∴用待定系数法可求出直线BC解析式为y=x–3.

又∵DP1∥CB,∴设直线DP1的解析式为y=x+n.

把D(4,–5)代入可求n= –

∴直线DP1解析式为y=x–.························· 9分

解方程组

∴点P1坐标为(),[坐标为()不符合题意,舍去].

······················································································································ 10分

②在线段O′B上取一点N,使BN=DM时,得ΔNBD≌ΔMDB(SAS),∴∠NDB=∠CBD.

由①知,直线BC解析式为y=x–3.

取x=4,得y= –,∴M(4,–),∴O′N=O′M=,∴N(,0),

又∵D(4,–5),

∴直线DN解析式为y=3x–17.······································································ 11分

解方程组

∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].

······················································································································ 12分

∴符合条件的点P有两个:P1(),P2(14,25).

解法三:分两种情况(如答案图3所示):

①求点P1坐标同解法二.··············································································· 10分

②过C点作BD的平行线,交圆O′于G,

此时,∠GDB=∠GCB=∠CBD.

由(2)题知直线BD的解析式为y=x–9,

又∵ C(0,–3)

∴可求得CG的解析式为y=x–3,

设G(m,m–3),作GH⊥x轴交与x轴与H,

连结O′G,在Rt△O′GH中,利用勾股定理可得,m=7,

由D(4,–5)与G(7,4)可得,

DG的解析式为,··········································································· 11分

解方程组

∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].························ 12分

∴符合条件的点P有两个:P1(),P2(14,25).

说明:本题解法较多,如有不同的正确解法,请按此步骤给分.

试题详情

97.(08新疆自治区24题)(10分)某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物线拱高为5.6m.

(1)在如图所示的平面直角坐标系中,求抛物线的表达式.

(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户?

(08新疆自治区24题解析)24.(10分)解:(1)设抛物线的表达式为  1分

在抛物线的图象上.

······························································ 3分

∴抛物线的表达式为············································································· 4分

(2)设窗户上边所在直线交抛物线于CD两点,D点坐标为(kt)

已知窗户高1.6m,∴··························································· 5分

(舍去)············································································ 6分

(m)·············································································· 7分

又设最多可安装n扇窗户

····················································································· 9分

答:最多可安装4扇窗户.···················································································· 10分

(本题不要求学生画出4个表示窗户的小矩形

试题详情

96.(08四川自贡26题)抛物线的顶点为M,与轴的交点为A、B(点B在点A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m、a、b。若关于的一元二次方程有两个相等的实数根。

(1)判断△ABM的形状,并说明理由。

(2)当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形。

(3)若平行于轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与轴相切,求该圆的圆心坐标。

(08四川自贡26题解析)解:(1)令

       得

     由勾股定理的逆定理和抛物线的对称性知

△ABM是一个以为直角边的等腰直角三角形

     (2)设

∵△ABM是等腰直角三角形

∴斜边上的中线等于斜边的一半

又顶点M(-2,-1)

,即AB=2

∴A(-3,0),B(-1,0)

将B(-1,0) 代入中得

∴抛物线的解析式为,即

图略

(3)设平行于轴的直线为

解方程组错误!不能通过编辑域代码创建对象。

  (

∴线段CD的长为

∵以CD为直径的圆与轴相切

据题意得

解得

∴圆心坐标为

试题详情

95.(08四川巴中30题)(12分)30.已知:如图14,抛物线轴交于点,点,与直线相交于点,点,直线轴交于点

(1)写出直线的解析式.

(2)求的面积.

(3)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?

(08四川巴中30题解析)解:(1)在中,令

··············································· 1分

的解析式为·············································································· 2分

(2)由,得  ···················································· 4分

······························································································· 5分

························································································· 6分

(3)过点于点

······························································································· 7分

·········································································································· 8分

由直线可得:

中,,则

······················································································· 9分

···················································································· 10分

····························································································· 11分

此抛物线开口向下,时,

当点运动2秒时,的面积达到最大,最大为.···························· 12分

试题详情

94.(08山东济宁26题)(12分)

中,cm.长为1cm的线段的边上沿方向以1cm/s的速度向点运动(运动前点与点重合).过分别作的垂线交直角边于两点,线段运动的时间为s.

(1)若的面积为,写出的函数关系式(写出自变量的取值范围);

(2)线段运动过程中,四边形有可能成为矩形吗?若有可能,求出此时的值;若不可能,说明理由;

(3)为何值时,以为顶点的三角形与相似?

(08山东济宁26题解析)解:(1)当点上时,

.········································································ 2分

当点上时,

.·················································· 4分

(2)

.········································································ 6分

由条件知,若四边形为矩形,需,即

s时,四边形为矩形.································································· 8分

(3)由(2)知,当s时,四边形为矩形,此时

.··························································································· 9分

除此之外,当时,,此时

.····························· 10分

.········································ 11分

s或s时,以为顶点的三角形与相似.··················· 12分

试题详情


同步练习册答案