题目列表(包括答案和解析)
3.(2010全国卷2)
(19)如图,直三棱柱
中,
,
,
为
的中点,
为
上的一点,
.
(Ⅰ)证明:
为异面直线
与
的公垂线;
(Ⅱ)设异面直线
与
的夹角为45°,求二面角
的大小.
[命题意图]本试题主要考查空间的线面关系与空间角的求解,考查考生的空间想象与推理计算的能力.
2.
(2010浙江理)(20)(本题满分15分)如图, 在矩形
中,点
分别在线段
上,
.沿直线
将
翻折成
,使平面
.
(Ⅰ)求二面角
的余弦值;
(Ⅱ)点
分别在线段
上,若沿直线
将四边形
向上翻折,使
与
重合,求线段
的长。
解析:本题主要考察空间点、线、面位置关系,二面角等基础知识,空间向量的应用,同事考查空间想象能力和运算求解能力。
(Ⅰ)解:取线段EF的中点H,连结
,因为
=
及H是EF的中点,所以
,
又因为平面
平面
.
如图建立空间直角坐标系A-xyz
则
(2,2,
),C(10,8,0),
F(4,0,0),D(10,0,0).
故
=(-2,2,2
),
=(6,0,0).
设
=(x,y,z)为平面
的一个法向量,
-2x+2y+2
z=0
所以
6x=0.
取
,则
。
又平面
的一个法向量
,
故
。
所以二面角的余弦值为![]()
(Ⅱ)解:设
则
,
因为翻折后,
与
重合,所以
,
故,
,得
,
经检验,此时点
在线段
上,
所以
。
方法二:
(Ⅰ)解:取线段
的中点
,
的中点
,连结
。
因为
=
及
是
的中点,
所以![]()
又因为平面![]()
平面
,
所以
平面
,
又
平面
,
故![]()
,
又因为
、
是
、
的中点,
易知
∥
,
所以![]()
![]()
,
于是![]()
面
,
所以
为二面角
的平面角,
在
中,
=
,
=2,
=![]()
所以
.
故二面角
的余弦值为
。
(Ⅱ)解:设
,
因为翻折后,
与
重合,
所以
,
而
,
![]()
得
,
经检验,此时点
在线段
上,
所以
。
1.(2010湖南文)18.(本小题满分12分)
如图所示,在长方体
中,AB=AD=1,AA1=2,M是棱CC1的中点
(Ⅰ)求异面直线A1M和C1D1所成的角的正切值;
(Ⅱ)证明:平面ABM⊥平面A1B1M1
![]()
1.(2010四川理)(15)如图,二面角
的大小是60°,线段
.
,
![]()
与
所成的角为30°.则
与平面
所成的角的正弦值是
.
[答案]![]()
[解析]过点A作平面β的垂线,垂足为C,在β内过C作l的垂线.垂足为D
连结AD,有三垂线定理可知AD⊥l,
故∠ADC为二面角
的平面角,为60°
又由已知,∠ABD=30°
连结CB,则∠ABC为
与平面
所成的角
设AD=2,则AC=
,CD=1
AB=
=4
∴sin∠ABC=![]()
8.(2010安徽理)8、一个几何体的三视图如图,该几何体的表面积为
A、280 B、292 C、360 D、372
[答案]C
[解析]该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。
.
[方法技巧]把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体的组合体,画出直观图,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和。
7.(2010山东理)(3)在空间,下列命题正确的是
(A)平行直线的平行投影重合
(B)平行于同一直线的两个平面平行
(C)垂直于同一平面的两个平面平行
(D)垂直于同一平面的两条直线平行
[答案]D
[解析]由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出答案。
[命题意图]考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题。
6.(2010湖北文)4.用
、
、
表示三条不同的直线,
表示平面,给出下列命题:
①若
∥
,
∥
,则
∥
;②若
⊥
,
⊥
,则
⊥
;
③若
∥
,
∥
,则
∥
;④若
⊥
,
⊥
,则
∥
.
A. ①② B. ②③ C. ①④ D.③④
![]()
5.(2010全国卷1文)(6)直三棱柱
中,若
,
,则异面直线
与
所成的角等于
(A)30° (B)45°(C)60° (D)90°
[答案]C
[命题意图]本小题主要考查直三棱柱
的性质、异面直线所成的角、异面直线所成的角的求法.
[解析]延长CA到D,使得
,则
为平行四边形,
就是异面直线
与
所成的角,又三角形
为等边三角形,![]()
4.(2010四川理)(11)半径为
的球
的直径
垂直于平面
,垂足为
,
![]()
是平面
内边长为
的正三角形,线段
、
分别
与球面交于点M,N,那么M、N两点间的球面距离是
(A)
(B)
(C)
(D)![]()
[答案]A
[解析]由已知,AB=2R,BC=R,故tan∠BAC=
cos∠BAC=![]()
连结OM,则△OAM为等腰三角形
AM=2AOcos∠BAC=
,同理AN=
,且MN∥CD
而AC=
R,CD=R
故MN:CD=AN:AC
Þ MN=
,
连结OM、ON,有OM=ON=R
于是cos∠MON=![]()
所以M、N两点间的球面距离是
3.(2010山东文)(4)在空间,下列命题正确的是
A.平行直线的平行投影重合
B.平行于同一直线的两个平面平行
C.垂直于同一平面的两个平面平行
D.垂直于同一平面的两条直线平行
[答案]D
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com