例3、给出下列四个对应的关系
①A=N*,B=Z,f:x→y=2x-3;
②A={1,2,3,4,5,6},B={y|y∈N*,y≤5},f:x→y=|x-1|;
③A={x|x≥2},B={y|y=x2-4x+3},f:x→y=x-3;
④A=N,B={y∈N*|y=2x-1,x∈N*},f:x→y=2x-1。
上述四个对应中是函数的有( )
A.① B.①③ C.②③ D.③④
思维分析:判断两个集合之间的对应是否构成函数,首先应判断能否构成映射,且构成映射的两个集合之间对应必须是非空数集之间的对应。
[选修延伸]
求映射的个数问题
例4、已知A={a,b,c},B={-1,0,1},映射f:A→B满足f(a)+f(b)=f(c),求映射f: A→B的个数。
思维分析:可让A中元素在f下对应B中的一个、两个或三个元素,并且满足f(a)+f(b)=f(c),需分类讨论。
追踪训练
1、下列对应是A到B上的映射的是( )
A.A=N*,B=N*,f:x→|x-3|
B.A=N*,B={-1,1, -2},f:x→(-1)x
C.A=Z,B=Q,f:x→![]()
D.A=N*,B=R,f:x→x的平方根
例2、已知集合A=R,B={(x,y)|x,y∈R},f:A→B是从A到B的映射,f:x→(x+1,x2+1),求A中的元素
在B中的象和B中元素(
,
)在A中的原象。
思维分析:将x=
代入对应关系,可求出其在B中对应元素,(
,
)在A中对应的元素可通过列方程组解出。
例1、下列集合M到P的对应f是映射的是( )
A.M={-2,0,2},P={-1,0,4},f:M中数的平方
B.M={0,1},P={-1,0,1},f:M中数的平方根
C.M=Z,P=Q,f:M中数的倒数。
D.M=R,P=R+,f:M中数的平方
5、函数f(x)=
是定义在(-1,1)上的奇函数,且f(
)=
.
(1)确定函数f(x)的解析式;
(2)用定义证明f(x)在(-1,1)上是增函数;
(3)解不等式f(t-1)+f(t)<0;
4、已知f(x)是偶函数,g(x)是奇函数,它们的定义域均为{x|x∈R且x≠±1},若f(x)+g(x)=
,则f(x)=________,g(x)=__________.
3、设f(x)在R上是偶函数,在区间(-∞,0)上递增,且有f(2a2+a+1)<f(3a2-2a+1),求a的取值范围。
2、下列函数中,在区间(-∞,0)上为增函数的是( )
A.y=1+
B.y=-(x+1)2
C.y=
D.y=x3
例4、设f(x)是定义在[-2,2]上的偶函数,当x≥0时,f(x)单调递减,若f(1-m)<f(m)成立,求m的取值范围。
追踪训练
1、函数f(x)=
的值域是( )
A.[
,+∞) B.(-∞,
]
C.(0,+∞) D.[1,+ ∞)
例3、已知y=f(x)是偶函数,且图象与x轴四个交点,则方程f(x)=0的所有实根之和是( )
A.4 B.2 C.0 D.不知解析式不能确定
例2、求函数y=
的单调区间,并对其中一种情况证明。
思维分析:要求出y=
的单调区间,首先求出定义域,然后利用复合函数的判定方法判断.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com