题目列表(包括答案和解析)

 0  49559  49567  49573  49577  49583  49585  49589  49595  49597  49603  49609  49613  49615  49619  49625  49627  49633  49637  49639  49643  49645  49649  49651  49653  49654  49655  49657  49658  49659  49661  49663  49667  49669  49673  49675  49679  49685  49687  49693  49697  49699  49703  49709  49715  49717  49723  49727  49729  49735  49739  49745  49753  447348 

36. (20011江苏镇江,23,7分)已知:如图,在梯形ABCD中AB∥CD,BC=CD,AD⊥BD,E为AB中点,

求证:四边形BCDE是菱形.

答案:证明:∵AD⊥BD,

∴∠ADB=90°。

又E为AB中点,∴DE=AB,BE=AB, ∴DE=BE

∴∠ DBE =∠EDB

又AB∥CD, ∴∠ BDC =∠EDB

∵BC=CD, ∴∠DBC =∠DBC

∴BC∥DE.

∵EB∥CD

∴四边形BCDE是平行四边形

∵BC=CD

∴四边形BCDE是菱形。

试题详情

35. (2011江苏盐城,27,12分)

情境观察

将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点DA(A′)、B在同一条直线上,如图2所示.

观察图2可知:与BC相等的线段是    ,∠CAC′=    °.

问题探究

如图3,△ABC中,AGBC于点G,以A为直角顶点,分别以ABAC为直角边,向△ABC外作等腰RtABE和等腰RtACF,过点EF作射线GA的垂线,垂足分别为PQ. 试探究EPFQ之间的数量关系,并证明你的结论.

拓展延伸

如图4,△ABC中,AGBC于点G,分别以ABAC为一边向△ABC外作矩形ABME和矩形ACNF,射线GAEF于点H. 若AB= k AEAC= k AF,试探究HEHF之间的数量关系,并说明理由.

[答案]情境观察

AD(或A′D)90 

问题探究

结论:EP=FQ. 

证明:∵△ABE是等腰三角形,∴AB=AE,∠BAE=90°.

∴∠BAG+∠EAP=90°.∵AGBC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.

EPAG,∴∠AGB=∠EPA=90°,∴RtABGRtEAP. ∴AG=EP.

同理AG=FQ.  ∴EP=FQ.

拓展延伸

结论: HE=HF. 

理由:过点EEPGA,FQ⊥GA,垂足分别为P、Q.

∵四边形ABME是矩形,∴∠BAE=90°,

∴∠BAG+∠EAP=90°.AGBC,∴∠BAG+∠ABG=90°,

∴∠ABG=∠EAP.

∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,∴ = .

同理△ACG∽△FAQ,∴ = .

AB= k AEAC= k AF,∴ = = k,∴ = . ∴EP=FQ.

∵∠EHP=∠FHQ,∴RtEPHRtFQH. ∴HE=HF.

试题详情

34. (2011湖南永州,25,10分)探究问题:

⑴方法感悟:

如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.

感悟解题方法,并完成下列填空:

将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:

AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

∴∠ABG+∠ABF=90°+90°=180°,

因此,点G,B,F在同一条直线上.

∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.

∵∠1=∠2,  ∴∠1+∠3=45°.

即∠GAF=∠_________.

又AG=AE,AF=AF

∴△GAF≌_______.

∴_________=EF,故DE+BF=EF.

⑵方法迁移:

如图②,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.

⑶问题拓展:

如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).

[答案]⑴EAF、△EAF、GF.

⑵DE+BF=EF,理由如下:

假设∠BAD的度数为,将△ADE绕点A顺时针旋转得到△ABG,此时AB与AD重合,由旋转可得:

AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

∴∠ABG+∠ABF=90°+90°=180°,

因此,点G,B,F在同一条直线上.

∵∠EAF=  ∴∠2+∠3=∠BAD-∠EAF=

∵∠1=∠2,  ∴∠1+∠3=

即∠GAF=∠EAF

又AG=AE,AF=AF

∴△GAF≌△EAF.

∴GF=EF,

又∵GF=BG+BF=DE+BF   ∴DE+BF=EF.

⑶当∠B与∠D互补时,可使得DE+BF=EF.

试题详情

33. (2011湖北襄阳,25,10分)

如图9,点P是正方形ABCDAB上一点(不与点AB重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PEPE交边BC于点F,连接BEDF.

(1)求证:∠ADP=∠EPB

(2)求∠CBE的度数;

(3)当的值等于多少时,△PFD∽△BFP?并说明理由.

[答案]

(1)证明:∵四边形ABCD是正方形

∴∠A=∠PBC=90°,ABAD,∴∠ADP+∠APD=90°················ 1分

∵∠DPE=90°  ∴∠APD+∠EPB=90°

∴∠ADP=∠EPB.········································································································ 2分

(2)过点EEGABAB的延长线于点G,则∠EGP=∠A=90°·· 3分

又∵∠ADP=∠EPBPDPE,∴△PAD≌△EGP

EGAPADABPG,∴APEGBG················································· 4分

∴∠CBE=∠EBG=45°.························································································· 5分

(3)方法一:

时,△PFE∽△BFP.·············································································· 6分

∵∠ADP=∠FPB,∠A=∠PBF,∴△ADP∽△BPF······························ 7分

ADABa,则APPB,∴BFBP····················· 8分

··········································································································· 9分

又∵∠DPF=∠PBF=90°,∴△ADP∽△BFP·········································· 10分

方法二:

假设△ADP∽△BFP,则.·································································· 6分

∵∠ADP=∠FPB,∠A=∠PBF,∴△ADP∽△BPF··························· 7分

,··············································································································· 8分

,··············································································································· 9分

PBAP,   ∴当时,△PFE∽△BFP.   10分

试题详情

32. (2011广东肇庆,22,8分)如图,矩形ABCD的对角线相交于点ODEACCEBD

(1)求证:四边形OCED是菱形;

(2)若∠ACB=30°,菱形OCED的面积为,求AC的长.

[答案]解:(1)证明:∵DEOC CEOD,∴四边形OCED是平行四边形.

∵四边形ABCD是矩形   ∴ AO=OC=BO=OD

∴四边形OCED是菱形.

 

(2)∵∠ACB30° ∴∠DCO 90°- 30°= 60°

又∵OD= OC,  ∴△OCD是等边三角形

DDFOCF,则CFOC,设CF,则OC2AC4

RtDFC中,tan 60°=   ∴DF=FC× tan 60°

由已知菱形OCED的面积为OC× DF,即

 解得  =2,  ∴ AC4´2=8

试题详情

31. (2011广东肇庆,20,7分)如图,在正方形ABCD中,E为对角线AC上一点,连接EBED

(1)求证:△BEC≌△DEC

(2)延长BEAD于点F,若∠DEB = 140°,求∠AFE的度数.

[答案]解:(1)证明:∵四边形ABCD 是正方形 ∴CD=CB, 

AC是正方形的对角线  ∴∠DCABCA  

CE CE       ∴△BEC≌△DEC 

(2)∵∠DEB = 140°

由△BEC≌△DEC可得∠DEC BEC140°¸2=70°,

∴∠AEF BEC70°,

又∵AC是正方形的对角线, ∠DAB90° ∴∠DAC BAC90°¸2=45°,

在△AEF中,∠AFE180°- 70°- 45°=65°  

试题详情

30. (2011贵州贵阳,18,10分)

如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EBEA,延长BE交边AD于点F

(1)求证:△ADE≌△BCE;(5分)

(2)求∠AFB的度数.(5分)

(第18题图)

[答案]解:(1)∵四边形ABCD是正方形,

∴∠ADC=∠BCD=90°,AD=BC

∵△CDE是等边三角形,

∴∠CDE=∠DCE=60°,DE=CE.                  

∵∠ADC=∠BCD=90°,∠CDE=∠DCE=60°,

∴∠ADE=∠BCE=30°.

AD=BC,∠ADE=∠BCEDE=CE

∴△ADE≌△BCE

(2)∵△ADE≌△BCE

AE=BE

∴∠BAE=∠ABE

∵∠BAE+∠DAE=90°,∠ABE+∠AFB=90°,BAE=∠ABE

∴∠DAE=∠AFB

AD=CD=DE

∴∠DAE=∠DEA

∵∠ADE=30°,

∴∠DAE=75°,

∴∠AFB=75°.

试题详情

29. (2011湖南衡阳,26,10分)如图,在矩形ABCD中,AD=4,AB=m(m>4),点PAB边上的任意一点(不与AB重合),连结PD,过点PPQPD,交直线BC于点Q

(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;

(2)连结AC,若PQAC,求线段BQ的长(用含m的代数式表示)

(3)若△PQD为等腰三角形,求以PQCD为顶点的四边形的面积Sm之间的函数关系式,并写出m的取值范围.

[解](1) 假设当m=10时,存在点P使得点Q与点C重合(如下图),

PQPD∴∠DPC=90°,∴∠APD+∠BPC=90°,

又∠ADP+∠APD=90°,∴∠BPC=∠ADP

又∠B=∠A=90°,∴△PBC∽△DAP,∴

,∴或8,∴存在点P使得点Q与点C重合,出此时AP的长2 或8.

(2) 如下图,∵PQAC,∴∠BPQ=∠BAC,∵∠BPQ=∠ADP,∴∠BAC=∠ADP,又∠B=∠DAP=90°,∴△ABC∽△DAP,∴,即,∴

PQAC,∴∠BPQ=∠BAC,∵∠B=∠B,∴△PBQ∽△ABC,即,∴

(3)由已知 PQPD,所以只有当DP=PQ时,△PQD为等腰三角形(如图),

∴∠BPQ=∠ADP,又∠B=∠A=90°,∴△PBQ≌△DAP

PB=DA=4,AP=BQ=

∴以PQCD为顶点的四边形的面积Sm之间的函数关系式为:S四边形PQCD= S矩形ABCDSDAPSQBP=

==16(4<≤8).

试题详情

20.28. (2011四川乐山20,10分)如图,E、F分别是矩形ABCD的对角线AC和BD上的点,且AE=DF。求证:BE=CF

[答案]

证明:∵四边形ABCD为矩形

    ∴OA=OB=OC=OD   AB=CD

    ∵AE=DF

    ∴OE=OF

    在ΔBOE与ΔCOF中,

    

   ∴ΔBOE≌ΔCOF(SAS)

   ∴BE=CF

试题详情

27. (2011上海,23,12分)如图,在梯形ABCD中,AD//BCABDC,过点DDEBC,垂足为E,并延长DEF,使EFDE.联结BFCFAC

(1)求证:四边形ABFC是平行四边形;

(2)如果DE2BE·CE,求证四边形ABFC是矩形.

[答案](1)连接BD.

DEBCEF=DE

BD=BFCD=CF

∵在梯形ABCD中,AD//BCAB=DC

∴四边形ABCD是等腰梯形.

BD=AC

AC=BFAB=CF

∴四边形ABFC是平行四边形.

(2)∵DE2 =BE·CEEF=DE

EF2 =BE·CE

又∵DEBC

∴∠CEF=∠FEB=90°.

∴△CEF∽△FEB

∴∠CFE=∠FBE

∵∠FBE+∠BFE=90°,

∴∠CFE +∠BFE=90°.

即∠BFC=90°.

由(1)知四边形ABFC是平行四边形,

∴证四边形ABFC是矩形.

试题详情


同步练习册答案