2.若复数
满足方程
,则
( ).
A.
B.
C.
D.
![]()
只有一个是正确的.
1. 不等式
的解集是( ).
A.
B.
∪
C.
D.
∪![]()
20.(本题满分15分)已知函数
=
+
有如下性质:如果常数
>0,那么该函数在
0,![]()
上是减函数,在![]()
,+∞
上是增函数.
(1)如果函数
=
+
(
>0)的值域为
6,+∞
,求
的值;
(2)研究函数
=
+
(常数
>0)在定义域内的单调性,并说明理由;
(3)对函数
=
+
和
=
+
(常数
>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数
=
+
(
是正整数)在区间[
,2]上的最大值和最小值(可利用你的研究结论).
19.(本小题满分13分)已知二次函数
的图像经过坐标原点,其导函数为
,数列
的前n项和为
,点
均在函数
的图像上。
(Ⅰ)、求数列
的通项公式;
(Ⅱ)、设
,
是数列
的前n项和,求使得
对所有
都成立的最小正整数m;
18.(本小题满分14分)设
分别为椭圆
的左、右顶点,椭圆长半轴的长等于焦距,且
为它的右准线。
(Ⅰ)求椭圆的方程;
(Ⅱ)设
为右准线上不同于点(4,0)的任意一点,若直线
分别与椭圆相交于异于
的点
,证明点
在以
为直径的圆内。
17.(本小题共 14 分) 如图,在底面为平行四边形的四棱锥 P-ABCD 中,AB⊥AC,PA⊥平面 ABCD,且 PA=PB,点 E 是 PD 的中点.
(Ⅰ)求证:AC⊥PB;
(Ⅱ)求证:PB//平面 AEC;
(Ⅲ)求二面角 E-AC-B 的大小.
16.(本小题共 12 分) 某公司招聘员工,指定三门考试课程,有两种考试方案.
方案一:考试三门课程,至少有两门及格为考试通过;
方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.
假设某应聘者对三门指定课程考试及格的概率分别是 a,b,c,且三门课程考试是否及格相互之间没有影响. 求:
(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;
(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)
15.(本小题满分12分)
已知函数![]()
,
求(1)函数
的最大值及取得最大值的自变量
的集合;
(2)函数
的单调增区间.
14.设
,函数
有最大值,则不等式
的解集为
。
13.水平桌面α上放有4个半径均为2R的球,且相邻的球都相切(球心的连线构成正方形).在这4个球的上面放1个半径为R的小球,它和下面4个球恰好都相切,则小球的球心到水平桌面α的距离是
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com