3.若复数z满足
(i是虚数单位),则z= .
2.若集合
,
满足
,则实数a=
.
1.不等式
的解集是 .
22.(本小题满分14分)
已知中心在原点的双曲线
的一个焦点是
,一条渐近线的方程是
.
(Ⅰ)求双曲线
的方程;
(Ⅱ)若以
为斜率的直线
与双曲线
相交于两个不同的点
,且线段
的垂直平分线与两坐标轴围成的三角形的面积为
,求
的取值范围.
21.(本小题满分14分)
设函数
,其中
.
(Ⅰ)当
时,讨论函数
的单调性;
(Ⅱ)若函数
仅在
处有极值,求
的取值范围;
(Ⅲ)若对于任意的
,不等式
在
上恒成立,求
的取值范围.
20.(本小题满分12分)
已知数列
中,
,
,且![]()
.
(Ⅰ)设
,证明
是等比数列;
(Ⅱ)求数列
的通项公式;
(Ⅲ)若
是
与
的等差中项,求
的值,并证明:对任意的
,
是
与
的等差中项.
19.(本小题满分12分)
如图,在四棱锥
中,底面
是矩形.已知
,
,
,
,
.
![]()
(Ⅰ)证明
平面
;
(Ⅱ)求异面直线
与
所成的角的大小;
(Ⅲ)求二面角
的大小.
18.(本小题满分12分)
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为
与
,且乙投球2次均未命中的概率为
.
(Ⅰ)求乙投球的命中率
;
(Ⅱ)求甲投球2次,至少命中1次的概率;
(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.
17.(本小题满分12分)
已知函数
的最小正周期是
.
(Ⅰ)求
的值;
(Ⅱ)求函数
的最大值,并且求使
取得最大值的
的集合.
16.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标的数字之和等于10,则不同的排法共有 种(用数字作答).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com