题目列表(包括答案和解析)

 0  56091  56099  56105  56109  56115  56117  56121  56127  56129  56135  56141  56145  56147  56151  56157  56159  56165  56169  56171  56175  56177  56181  56183  56185  56186  56187  56189  56190  56191  56193  56195  56199  56201  56205  56207  56211  56217  56219  56225  56229  56231  56235  56241  56247  56249  56255  56259  56261  56267  56271  56277  56285  447348 

98. 已知ABCD是矩形,SA⊥平面ABCDMN分别是SCAB的中点.

求证:MNAB

解析:连结MBMA,证明MBMA

试题详情

97. 已知:如图,AS⊥平面SBCSO⊥平面ABCO

求证:AOBC

解析:连结AO,证明BC⊥平面ASO

试题详情

96. 已知PA,PB,PC与平面α所成的角分别为60°,45°,30°,PO⊥平面α,O为垂足,又斜足A,B,C三点在同一直线上,且AB=BC=10cm,求PO的长.

解析:

试题详情

95. 已知:ABCD是矩形,SA⊥平面ABCD,E是SC上一点.

求证:BE不可能垂直于平面SCD.

解析:用到反证法,假设BE⊥平面SCD,

∵ AB∥CD;∴AB⊥BE.

∴ AB⊥SB,这与Rt△SAB中∠SBA为锐角矛盾.

∴ BE不可能垂直于平面SCD.

试题详情

94. 已知E,F分别是正方形ABCD边AD,AB的中点,EF交AC于M,GC垂直于ABCD所在平面.

(1)求证:EF⊥平面GMC.

(2)若AB=4,GC=2,求点B到平面EFG的距离.

解析:第1小题,证明直线与平面垂直,常用的方法是判定定理;第2小题,如果用定义来求点到平面的距离,因为体现距离的垂线段无法直观地画出,因此,常常将这样的问题转化为直线到平面的距离问题.

解:

(1)连结BD交AC于O,

∵E,F是正方形ABCD边AD,AB的中点,AC⊥BD,

∴EF⊥AC.

∵AC∩GC=C,

∴EF⊥平面GMC.

(2)可证BD∥平面EFG,由例题2,正方形中心O到平面EFG

试题详情

93. 如图,在正方体ABCD-A1B1C1D1中,点NBD上,点MB1C上,并且CM=DN.

求证:MN∥平面AA1B1B.

解析:本题是把证“线面平行”转化为证“线线平行”,即在平面ABB1A1内找一条直线与MN平行,除上面的证法外,还可以连CN并延长交直线BA于点P,连B1P,就是所找直线,然后再设法证明MNB1P.

分析二:要证“线面平行”也可转化为证“面面平行”,因此,本题也可设法过MN作一个平面,使此平面与平面ABB1A1平行,从而证得MN∥平面ABB1A1.

试题详情

92. 已知:平面α∥平面β,线段AB分别交αβ于点MN;线段AD分别交αβ于点CD;线段BF分别交αβ于点FE,且AM=m,BN=n,MN=p,△FMC面积=(m+p)(n+p),求:END的面积.

解析:如图,面AND分别交αβMCND,因为αβ

MCND,同理MFNE,得

FMC=∠END

NDMC=(m+p):mENFMn∶(n+p)

SENDSFMC

SEND×SFMC

·(m+p)(n+p)=(m+p)2

∴△END的面积为(m+p)2平方单位.

试题详情

91. 如图,正方体ABCD-A1B1C1D1中,EAB1上,FBD上,且B1EBF.

求证:EF∥平面BB1C1C.

证法一:连AF延长交BCM,连结B1M.

ADBC

∴△AFD∽△MFB

又∵BDB1AB1EBF

DFAE

EFB1MB1M平面BB1C1C

EF∥平面BB1C1C.

证法二:作FHADABH,连结HE

ADBC

FHBCBCBB1C1C

FH∥平面BB1C1C

FHAD可得

BFB1EBDAB1

EHB1BB1B平面BB1C1C

EH∥平面BB1C1C

EHFHH

∴平面FHE∥平面BB1C1C

EF平面FHE

EF∥平面BB1C1C

说明:证法一用了证线面平行,先证线线平行.证法二则是证线面平行,先证面面平行,然后说明直线在其中一个平面内.

试题详情

90. 三个平面两两相交得三条直线,求证:这三条直线相交于同一点或两两平行.

已知:平面α∩平面βa,平面β∩平面γb,平面γ∩平面αc.

求证:abc相交于同一点,或abc.

证明:∵αβaβγb

abβ

ab相交或ab.

(1)ab相交时,不妨设abP,即PaPb

abβaα

PβPα,故Pαβ的公共点

又∵αγc

由公理2知Pc

abc都经过点P,即abc三线共点.

(2)当ab

αγcaαaγ

acab

abc

abc两两平行.

由此可知abc相交于一点或两两平行.

说明:此结论常常作为定理使用,在判断问题中经常被使用.

试题详情

89. 已知平面.其中=l=a=a=b=b

上述条件能否保证有?若能,给出证明,若不能给出一个反例,并添加适当的条件,保证有

不足以保证

如右图.

如果添加条件ab是相交直线,那么

证明如下:

aa

bb

ab内两条相交直线,

试题详情


同步练习册答案