题目列表(包括答案和解析)
1. □ABCD中,如果∠B=100°,那么∠A、∠D的值分别是 ( )
A.∠A=80°,∠D=100° B.∠A=100°,∠D=80°
C.∠B=80°,∠D=80° D.∠A=100°,∠D=100°
10.是平行四边形,△AOE≌△COF.
11是平行四边形,四边形AMCN、BMDN是平行四边形.
9. 线段AC与EF互相平分.理由是:∵四边形ABCD是平行四边形.
∴AB∥CD,即AE∥CF,AB=CD,∵BE=DF,∴AE=CF
∴四边形AECF是平行四边形,
∴AC与EF互相平分.
8.证明:(1)∵BD=CD,∴∠BCD=∠1.∵ ∠l=∠2,∠BCD=∠2.∴CD∥AB.
(2) ∵ CD∥AB ∴∠CDA=∠3.
∠BCD=∠2=∠3.且BE=AE.且∠CDA=∠BCD.∴DE=CE.
在△BDE和△ACE中, DE=CE,∠DEB=∠CEA,BE=AE.∴△BDE≌△ACE
(3) ∵△BDE≌△ACE
∠4=∠1,∠ACE=∠BDE=90°.
∴∠ACH=90°一∠BCH
又CH⊥AB,.∴ ∠2=90°一∠BCH
∴∠ACH=∠2=∠1=∠4.AF=CF
∵∠AEC=90°一∠4,∠ECF=90°一∠ACH
∠ACH=∠4 ∠AEC=∠ECF.CF=EF.∴ EF=AF
O为AB中点,OF为△ABE的中位线 ∴OF=
BE
7.解:∵BA∥DE,BD∥AE,∴四边形ABDE是平行四边形
∴AB=DE,BD=AE,又EF=FC且AF∥BC,EC⊥BC,∴DE=DC,
∴EA+AE+EF=BD+DC+CF,∴二人同时到达F站.
6.证明:(1)∵ 四边形ABCD是平行四边形,∴AB∥CF.
∴∠1=∠2,∠3=∠4 ∵E是AD的中点,∴ AE=DE.
∴△ABE ≌△DFE.
(2)四边形ABDF是平行四边形.∵△ABE ≌△DFE
∴AB=DF 又AB∥CF.∴四边形ABDF是平行四边形.
1.C;2.D,提示:根据三角形中位线的性质定理:
3.26或22,提示:当两腰上的中位线长为3时,则底边长为6,腰长为10,三角形的周长为26,当两腰上的中位线长为5时,则底边长为10,腰长为6,三角形的周长为22;4.平行四边形
;5.平行四边形;
11.如图所示,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?
课时四答案:
10. 如图所示,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形,说明理由.
![]()
9.. 已知如图:在
ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com