22.(本小题满分14分)
如图,设抛物线
的焦点为F,动点P在直线
上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.
(1)求△APB的重心G的轨迹方程.
(2)证明∠PFA=∠PFB.
![]()
21.(本小题满分12分)
已知数列![]()
![]()
(1)证明![]()
(2)求数列
的通项公式an.
20.(本小题满分12分)
如图,在长方体ABCD-A1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为
.
![]()
19.(本小题满分12分)
A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢得B一张卡片,否则B赢得A一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止.设
表示游戏终止时掷硬币的次数.
(1)求
的取值范围;
(2)求
的数学期望E
.
18.(本小题满分12分)
已知向量
.
是否存在实数
若存在,则求出x的值;若不存在,则证明之.
17.(本小题满分12分)
已知函数
(a,b为常数)且方程f(x)-x+12=0有两个实根为x1=3, x2=4.
(1)求函数f(x)的解析式;
(2)设k>1,解关于x的不等式;![]()
16.以下四个关于圆锥曲线的命题中
①设A、B为两个定点,k为非零常数,
,则动点P的轨迹为双曲线;
②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若
则动点P的轨迹为椭圆;
③方程
的两根可分别作为椭圆和双曲线的离心率;
④双曲线
有相同的焦点.
其中真命题的序号为 (写出所有真命题的序号)
15. 如图,在直三棱柱ABC-A1B1C1中,AB=BC=
,BB1=2,
,E、F分别为AA1、C1B1的中点,沿棱柱的表面从E到F两点的最短路径的长度为
.
![]()
14.设实数x, y满足
.
13.若函数
是奇函数,则a=
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com