0  266528  266536  266542  266546  266552  266554  266558  266564  266566  266572  266578  266582  266584  266588  266594  266596  266602  266606  266608  266612  266614  266618  266620  266622  266623  266624  266626  266627  266628  266630  266632  266636  266638  266642  266644  266648  266654  266656  266662  266666  266668  266672  266678  266684  266686  266692  266696  266698  266704  266708  266714  266722  447090 

4.培养培养学生数形结合的意识用联系的观点研究数学问题的能力。

[课堂互动]

自学评价

试题详情

3.记住对数函数图象的规律,并能用于解题;

试题详情

2.了解对数函数与指数函数的互为反函数,能利用其相互关系研究问题,会求对数函数的定义域;

试题详情

1.要求了解对数函数的定义、图象及其性质以及它与指数函数间的关系。

试题详情

3.

学生质疑
 
教师释疑
 

试题详情

例3:如图,2000年我国国内生产总值(GDP)为89442亿元.如果我国GDP年均增长7.8%左右,按照这个增长速度,在2000年的基础上,经过多少年以后,我国GDP才能实现比2000年翻两番的目标?

[解]

设经过年后我国的GDP实现比2000年翻两番. 则:

 

答:约经过19年以后,我国GDP才能实现比2000年番两番.

例4: 要测定古物的年代,可以用放射性碳法:在动植物的体内都含有微量的放射性.动植物死亡后,停止了新陈代谢,不再产生,且原有的会自动衰变.经过5730年(的半衰期),它的残余量只有原始量的一半.我国辽东半岛普兰店附近的泥炭中发掘出的古莲子中的残余量占原来的87.9%,试推算古莲子的生活年代.

分析:

[解]设经过年后的残余量是,由的半衰期是5730年,即时,得 

,∴由,知

,∴

∴古莲子约是1066年前的遗物。

思维点拔:

有关增长率问题,满足关系式,其中是增长(降低)前的量,为增长率(降低率),为增长(降低)次数,是增长(降低)后的量,要求 需要对等式两边取对数,选择恰当的底数是关键,在解题过程中,常取常用对数。

追踪训练二

1.

试题详情

2.已知:,求

试题详情

例5:已知,求之间的关系。

分析:由于在幂的指数上,所以可考虑用对数式表示出

[解]∵ ,∴两边取以10为底的对数得:

,∵

点评:本题要求关于的代数式的值,必须对已知等式两边取对数,恰当的选取对数的底数是十分重要的,同时是关键。

例6.设

求:的值

分析:本题只需求出的值,从条件式出发,设法变形为的方程。

[解]当时,原式可化为:,即

,∴(舍)

思维点拔:

本题在求时,不是分别求出的值,而是把看成一个字母,这种方法称为“整体”思想方法。是关于的齐次式,对于齐次式通常都用本题的方法处理。

对于连比式,通常对等式两边取对数,转化为对数运算,同时化对数的底数相同也是解决对数问题的常用策略.

追踪训练二

1.设,求的值。

试题详情

例4:计算: ①,②

[解]解:①设  则 ,  ,  ∴  ∴

②方法同① 

例5:求 x 的值:

;   

 ②

[解]

① 

但必须: ,  ∴舍去 ,从而

  ∴

点评:本题的关键是根据对数的概念,将对数式还原成指数式,但要注意对数式中底数和真数的取值要求。

思维点拔:

要明确在对数式与指数式中各自的含义,在指数式中,是底数,是指数,是幂;在对数式中,是对数的底数,是真数,是以为底的对数,虽然在对数式与指数式中的名称不同,但对数式与指数式有密切的联系:求对数就是求中的指数,也就是确定的多少次幂等于

追踪训练二

求下列各式中的x的值:

⑴logx9=2;⑵lgx2= -2;

⑶log2[log2(log2x)]=0

学生质疑
 
教师释疑
 

试题详情


同步练习册答案