精英家教网 > 练习册解析答案 > 学生基础性作业九年级数学人教版 > 第27页解析答案
学生基础性作业九年级数学人教版

学生基础性作业九年级数学人教版

注:当前书本只展示部分页码答案,查看完整答案请下载作业精灵APP。练习册学生基础性作业九年级数学人教版答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。

10. 第14届国际数学教育大会(ICME-14)在上海召开,本次大会中会徽的主题图案有着丰富的数学元素,展现了我国数学的文化魅力,其右下方的是用我国古代的计数符号写出的八进制数3 745. 八进制是以8作为进位基数的数字系统,有0~7共8个基本数字. 八进制数3 745换算成十进制数是$3×8^{3}+7×8^{2}+4×8^{1}+5×8^{0}=2021$,2021表示ICME-14的举办年份. [注:$a^{0}=1(a\neq0)$]
(1)八进制数256换算成十进制数是______.
(2)小华同学设计了一个$n$进制数505,换算成十进制数是250,求$n$的值.
答案:(1)174
解析:$2×8^{2}+5×8^{1}+6×8^{0}=2×64 + 5×8 + 6×1=128 + 40 + 6=174$。
(2)7
解析:$5×n^{2}+0×n^{1}+5×n^{0}=250$,$5n^{2}+5=250$,$5n^{2}=245$,$n^{2}=49$,$n=7$($n=-7$舍去)。
11. 一次围棋比赛采用单循环赛制(即每位选手与其他选手各比赛1局),参赛者少于10个人. 关于比赛的总局数有以下两种不同的说法:一种说法是共28局;另一种说法是共24局. 如果比赛中没有人中途退出,你认为哪一种说法正确?如果有1个人中途退出比赛呢?请说明理由.
答案:(1)28局说法正确
解析:单循环赛制总局数$\frac{n(n - 1)}{2}$,$n<10$。$\frac{n(n - 1)}{2}=28$,$n^{2}-n - 56=0$,$n=8$(符合);$\frac{n(n - 1)}{2}=24$,$n^{2}-n - 48=0$,无整数解,故28局正确。
(2)若1人中途退出,24局说法正确
解析:设原有人数$n$,退出1人后比赛局数为$\frac{(n - 1)(n - 2)}{2}$。若$\frac{(n - 1)(n - 2)}{2}=24$,$(n - 1)(n - 2)=48$,$n - 1=8$,$n - 2=6$,$n=9$(符合$n<10$),故24局正确。