1.排列的概念:从n个不同元素中任取m个元素,按照一定的次序排成一列,叫做从n个不同元素中取出m个元素的一个排列.排列的个数叫做从n个不同元素中取出m个元素的排列数,用A
表示.
10.2 排列
●知识梳理
2.元素能重复的问题往往用计数原理.
●教师下载中心
教学点睛
弄清两个原理的区别与联系,是正确使用这两个原理的前提和条件.这两个原理都是指完成一件事而言的.其区别在于:(1)分类计数原理是“分类”,分步计数原理是“分步”;(2)分类计数原理中每类办法中的每一种方法都能独立完成一件事,分步计数原理中每步中每种方法都只能做这件事的一步,不能独立完成这件事.
拓展题例
[例1] 关于正整数2160,求:
(1)它有多少个不同的正因数?
(2)它的所有正因数的和是多少?
解:(1)∵N=2160=24×33×5,
∴2160的正因数为P=2α×3β×5γ,
其中α=0,1,2,3,4,β=0,1,2,3,γ=0,1.
∴2160的正因数共有5×4×2=40个.
(2)式子(20+21+22+23+24)×(30+31+32+33)×(50+51)的展开式就是40个正因数.
∴正因数之和为31×40×6=7440.
[例2] 球台上有4个黄球,6个红球,击黄球入袋记2分,击红球入袋记1分,欲将此十球中的4球击入袋中,但总分不低于5分,击球方法有几种?
解:设击入黄球x个,红球y个符合要求,
则有
x+y=4,
2x+y≥5(x、y∈N),得1≤x≤4.
∴![]()
相应每组解(x,y),击球方法数分别为C
C
,C
C
,C
C
,C
C
.
共有不同击球方法数为C
C
+C
C
+C
C
+C
C
=195.
1.分类计数原理和分步计数原理是解决排列、组合问题的理论基础.这两个原理的本质区别在于分类与分步,分类用分类计数原理,分步用分步计数原理.
10.三边长均为整数,且最大边长为11的三角形的个数是多少?
解:设较小的两边长为x、y且x≤y,
则
x≤y≤11,
x+y>11,
x、y∈N*.
当x=1时,y=11;
当x=2时,y=10,11;
当x=3时,y=9,10,11;
当x=4时,y=8,9,10,11;
当x=5时,y=7,8,9,10,11;
当x=6时,y=6,7,8,9,10,11;
当x=7时,y=7,8,9,10,11;
……
当x=11时,y=11.
所以不同三角形的个数为
1+2+3+4+5+6+5+4+3+2+1=36.
评述:本题关键是列出约束条件,然后寻找x=1,2,…,11时,y的取值个数的规律,再用分类计数原理求解.
●思悟小结
9.五名学生报名参加四项体育比赛,每人限报一项,报名方法的种数为多少?又他们争夺这四项比赛的冠军,获得冠军的可能性有多少种?
解:(1)5名学生中任一名均可报其中的任一项,因此每个学生都有4种报名方法,5名学生都报了项目才能算完成这一事件.故报名方法种数为4×4×4×4×4=45种.
(2)每个项目只有一个冠军,每一名学生都可能获得其中的一项获军,因此每个项目获冠军的可能性有5种.故有n=5×5×5×5=54种.
探究创新
8.(理)设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子.现将这五个球投放入这五个盒子内,要求每个盒子内投放一球,并且恰好有两个球的编号与盒子的编号相同,则这样的投放方法有多少种?
分析:五个球分别投放到五个盒子内,恰好有两个球的编号与盒子的编号相同,则其他三个球必不能投放到与球的编号相同的盒子内,此时,这三个球与对应的三个盒子,就成了受限的特殊元素与特殊位置.
解:先在五个球中任选两个球投放到与球编号相同的盒子内,有C
种;剩下的三个球,不失一般性,不妨设编号为3,4,5,投放3号球的方法数为C
,则投放4,5号球的方法只有一种,根据分步计数原理共有C
·C
=20种.
评述:本题投放球有两种方法,一种是投入到与编号相同的盒子内,另一种是投入到与编号不同的盒子内,故应分步完成.
(文)在所有两位数中,个位数字大于十位数字的两位数共有多少个?
分析:在0~9这10个数字中,按照题目要求组成的两位数中,个位数字不能为0和1,十位数字不能为0和9.也就是说组成两位数的数字可按个位分类或按十位分类来计算.
解法一:按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个.
则共有1+2+3+4+…+7+8=36(个).
解法二:按十位数字是1,2,3,4,5,6,7,8分成8类,在每一类中满足条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.
则共有8+7+6+5+4+3+2+1=36(个).
评述:在具体分类或分步时,常遇到困难,要多练习,多积累经验,掌握思维方法,逐步做到恰当分类,合理分步.
7.(2003年全国)如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色.现有4种颜色可供选择,则不同的着色方法共有_____________种.(以数字作答)
![]()
解析:依次染①、②、③、④、⑤.故有C
·C
·C
·C
·C
=72种.
答案:72
6.(2001年上海)某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2菜2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需要不同的素菜品种_____________种.(结果用数值表示)
解析:设素菜n种,则C
·C
≥200
n(n-1)≥40,所以n的最小值为7.
答案:7
培养能力
5.4棵柳树和4棵杨树栽成一行,柳树、杨树逐一相间的栽法有_____________种.
解析:2A
·A
=1152种.
答案:1152
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com