3.两种抽样方法的比较(略).
2.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.
1.简单随机抽样:一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.
12.1 抽样方法与总体分布的估计
●知识梳理
3.会用样本估计总体平均值和方差.
●复习方略指南
在本章的复习中,要理解几种抽样方法的区别与联系.应充分注意一些重要概念的实际意义,理解概率统计中处理问题的基本思想方法,掌握所学的概率统计知识的实际应用.
这部分内容高考命题趋向主要以选择题、填空题为主,重点考查基础知识、基本概念及其简单的应用.
对有关概率统计的应用题要多加关注.
2.会用样本频率分布估计总体分布.
1.了解简单随机抽样、分层抽样及系统抽样的意义,会用它们对简单实际问题进行抽样.
4.n次独立重复试验中某事件发生k次的概率Pn(k)=C
pk(1-p)n-k正好是二项式[(1-p)+p]n的展开式的第k+1项.
拓展题例
[例1] 把n个不同的球随机地放入编号为1,2,…,m的m个盒子内,求1号盒恰有r个球的概率.
解法一:用独立重复试验的概率公式.把1个球放入m个不同的盒子内看成一次独立试验,其中放入1号盒的概率为P=
.这样n个球放入m个不同的盒子内相当于做n次独立重复试验.由独立重复试验中事件A恰好发生k次的概率公式知,1号盒恰有r个球的概率
Pn(r)=C
pr(1-p)n-r=C
·(
)r·(1-
)n-r=
.
解法二:用古典概型.把n个不同的球任意放入m个不同的盒子内共有mn个等可能的结果.其中1号盒内恰有r个球的结果数为C
(m-1)n-r,故所求概率P(A)=
.
答:1号盒恰有r个球的概率为
.
[例2] 假设每一架飞机引擎在飞行中故障率为1-P,且各引擎是否故障是独立的,如果至少50%的引擎能正常运行,飞机就可以成功地飞行,问对于多大的P而言,4引擎飞机比2引擎的飞机更为安全?
分析:4引擎飞机可以看作4次独立重复试验,要能正常运行,即求发生k次(k≥2)的概率.同理,2引擎飞机正常运行的概率即是2次独立重复试验中发生k次(k≥1)的概率,由此建立不等式求解.
解:4引擎飞机成功飞行的概率为
C
P2(1-P)2+C
P3(1-P)+C
P4=6P2(1-P)2+4P3(1-P)+P4.
2引擎飞机成功飞行的概率为C
P(1-P)+C
P2=2P(1-P)+P2.
要使4引擎飞机比2引擎飞机安全,只要6P2(1-P)2+4P3(1-P)+P4≥2P(1-P)+P2.
化简,分解因式得(P-1)2(3P-2)≥0.
所以3P-2≥0,
即得P≥
.
答:当引擎不出故障的概率不小于
时,4引擎飞机比2引擎飞机安全.
3.某些事件若含有较多的互斥事件,可考虑其对立事件的概率,这样可减少运算量,提高正确率.要注意“至多”“至少”等题型的转化,如例1.
2.A、B中至少有一个发生:A+B.
(1)若A、B互斥:P(A+B)=P(A)+P(B),否则不成立.
(2)若A、B相互独立(不互斥).
法一:P(A+B)=P(A·B)+P(A·
)+P(
·B);
法二:P(A+B)=1-P(
·
);
法三:P(A+B)=P(A)+P(B)-P(AB).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com