∴xn-xn-1=(
)n-1,n=1,2,….
.
又f(xn)=n,f(xn-1)=n-1;
=b,即x2-x1=
得x2=1+
.
记x0=0,由函数y=f(x)图象中第n段线段的斜率为bn-1,故得
=1得x1=1.
又由f(x2)=2,当1≤y≤2时,函数y=f(x)的图象是斜率为b的线段,故由
63.(Ⅰ)解:依题意f(0)=0,又由f(x1)=1,当0≤y≤1时,函数y=f(x)的图象是斜率为b0=1的线段,故由
=-n+
=2n+1-(n+2)
解法二:设Sn=a1+a2+…+an,而an=2n-1
∴Sn=1+2+…2n-1=2n-1
∴Tn=na1+(n-1)a2+…+2an-1+an
=a1+(a1+a2)+(a1+a2+a3)+…+(a1+a2+…+an-1+an)
=S1+S2+…+Sn
=(2-1)+(22-1)+…+(2n-1)
=(2+22+…+2n)-n=2n+1-(n+2)
评述:本题考查等比数列的有关知识,以及灵活运用数学方法的能力.第(2)问的两种解法都比较巧妙,解法一扣住课本中的错位相减法;解法二活用S1=a1,S2=a1+a2,…,从而获得新的解题思路.
又T1=1,T2=4,∴a1=1,q=2.
(2)解法一:由(1)知:a=1,q=2,∴an=a1?qn-1=2n-1
∴Tn=n?1+(n-1)?2+(n-2)?22+…+2?2n-2+1?2n-1 ①
2Tn=n?2+(n-1)?22+(n-2)?23+…+2?2n-1+1?2n ②
②-①得Tn=n?2+(n-1)?22+…+2?2n-1+2n-[n?1+(n-1)2+…+2?2n-2+1?2n-1]
=-n+2+22+…+2n-1+2
62.解:(1)设等比数列{an}的公比为q,则T1=a1,T2=
又m∈N,从而m=4,5,6,7,8.
(Ⅱ)∵a1+a2+…+am=ma1+
=-
∴am+1+am+2+…+a
=-393×(
∵-160b2=-288,∴
m2-
即(m-4)(m-8)≤0,解得4≤m≤8,
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com