题目列表(包括答案和解析)
20.本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.满分12分.
解:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以
为焦点,长半轴为2的椭圆.它的短半轴
,
故曲线C的方程为
.··················································································· 3分
(Ⅱ)设
,其坐标满足
![]()
消去y并整理得
,
故
.······································································· 5分
若
,即
.
而
,
于是
,
化简得
,所以
.············································································ 8分
(Ⅲ)
![]()
.
因为A在第一象限,故
.由
知
,从而
.又
,
故
,
即在题设条件下,恒有
.
21.在直角坐标系
中,点P到两点
,
的距离之和等于4,设点P的轨迹为
,直线
与C交于A,B两点.
(Ⅰ)写出C的方程;
(Ⅱ)若![]()
![]()
,求k的值;
(Ⅲ)若点A在第一象限,证明:当k>0时,恒有|
|>|
|.
20.(本小题满分12分)
在数列
中,
,
,且
(
).
(Ⅰ)设
(
),证明
是等比数列;
(Ⅱ)求数列
的通项公式;
本小题主要考查等差数列、等比数列的概念、等比数列的通项公式及前
项和公式,考查运算能力和推理论证能力及分类讨论的思想方法.满分12分.
(Ⅰ)证明:由题设
(
),得
,即
,
.
又
,
,所以
是首项为1,公比为
的等比数列.
(Ⅱ)解法:由(Ⅰ)
,
,
……
,(
).
将以上各式相加,得
(
).
所以当
时,![]()
上式对
显然成立.
3.
如图,在三棱锥
中,
,
,
,
.
(Ⅰ)求证:
;
(Ⅱ)求二面角
的大小;
(Ⅲ)求点
到平面
的距离.
解法一:
(Ⅰ)取
中点
,连结
.
,
.
![]()
,
.
,
平面
.
平面
,
.
(Ⅱ)
,
,
![]()
.
又
,
.
又
,即
,且
,
平面
.
取
中点
.连结
.
,
.
是
在平面
内的射影,
.
是二面角
的平面角.
在
中,
,
,
,
.
![]()
二面角
的大小为
.
(Ⅲ)由(Ⅰ)知
平面
,
平面
平面
.
过
作
,垂足为
.
平面
平面
,
平面
.
的长即为点
到平面
的距离.
由(Ⅰ)知
,又
,且
,
平面
.
平面
,
.
在
中,
,
,
.
.
点
到平面
的距离为
.
解法二:
(Ⅰ)
,
,
.
又
,
.
,
平面
.
平面
,
.
(Ⅱ)如图,以
为原点建立空间直角坐标系
.
则
.
设
.
,
,
.
取
中点
,连结
.
,
,
,
.
是二面角
的平面角.
,
,
,
.
二面角
的大小为
.
(Ⅲ)
,
在平面
内的射影为正
的中心
,且
的长为点
到平面
的距离.
如(Ⅱ)建立空间直角坐标系
.
,
点
的坐标为
.
.
点
到平面
的距离为
.
17(本小题满分12分)
已知函数
(
)的最小值正周期是
.
(Ⅰ)求
的值;
(Ⅱ)求函数
的最大值,并且求使
取得最大值的
的集合.
(17)本小题主要考查特殊角三角函数值、两角和的正弦、二倍角的正弦与余弦、函数
的性质等基础知识,考查基本运算能力.满分12分.
(Ⅰ)解:
![]()
由题设,函数
的最小正周期是
,可得
,所以
.
(Ⅱ)由(Ⅰ)知,
.
当
,即
时,
取得最大值1,所以函数
的最大值是
,此时
的集合为
.
18.(本小题共13分)
甲、乙等五名奥运志愿者被随机地分到
四个不同的岗位服务,每个岗位至少有一名志愿者.
(Ⅰ)求甲、乙两人同时参加
岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;
(Ⅲ)设随机变量
为这五名志愿者中参加
岗位服务的人数,求
的分布列.
解:(Ⅰ)记甲、乙两人同时参加
岗位服务为事件
,那么
,
即甲、乙两人同时参加
岗位服务的概率是
.
(Ⅱ)记甲、乙两人同时参加同一岗位服务为事件
,那么
,
所以,甲、乙两人不在同一岗位服务的概率是
.
(Ⅲ)随机变量
可能取的值为1,2.事件“
”是指有两人同时参加
岗位服务,
则
.
所以
,
的分布列是
|
|
1 |
3 |
|
|
|
|
··································································································································· 12分
16.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 种.(用数字作答).96
15.已知随机变量
服从正态分布N(3,a2),则P(
=
。![]()
14.
. ![]()
13.在
的展开式中,含
的项的系数是
。-15
12.函数y=lncosx(-
<x<
的图象是A
![]()
第Ⅱ卷(非选择题 共90分)
请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com