题目列表(包括答案和解析)
20.(本小题满分14分)过抛物线![]()
![]()
的对称轴上的定点
,作直线
与抛物线相交于
两点.
(1)试证明
两点的纵坐标之积为定值;
(2)若点
是定直线
上的任一点,试探索三条直线
的斜率之间的关系,并给出证明.
19.(本小题满分14分,第一、第二小问满分各6分)
如图,在斜三棱柱ABC-A1B1C1 中,侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC成600的角, AA1= 2.底面ABC是边长为2的正三角形,其重心为G点。E是线段BC1上一点,且BE=
BC1 .
(1)求证: GE∥侧面AA1B1B ;
(2)求平面B1GE与底面ABC所成锐二面角的大小 .
18.(本小题满分14分)已知函数
.
(1)求
的定义域,并判断
的奇偶性;
(2)解关于
的不等式:
;
17.(本小题满分12)已知向量
.
(1)向量
是否共线?证明你的结论;
(2)若函数
,求
的最小值,并指出取得最小值时的
值.
16.等比数列
的公比为
,其前
项的积为
,并且满足条件
,
,
。给出下列结论:①
;②
③
的值是
中最大的;④使
成立的最大自然数
等于198。其中正确的结论是
.
15.在△ABC中,角A,B,C所对的边分别是a,b,c,且
,
,△ABC的面积
,则a = .
14.
的值等于
.
13.定义一种运算“
”对于正整数满足以下运算性质:
(1)
;(2)
,则
的值是
11命题“若
都是偶数,则
是偶数”的否命题是_________
12. 以
、
为焦点且过点
的双曲线的标准方程为
.
10.半径为4的球面上有A、B、C、D四点,且AB,AC,AD两两互相垂直,则
、
、
面积之和
的最大值为 ( )
A.8 B.16 C.32 D.64
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com