题目列表(包括答案和解析)
20.(本小题满分12分)
如图,在棱长为1的正方体ABCD-A1B1C1D1中,
(1)线段
上是否存在一点
使得
平面
,若存在,确定
点的位置,若不存在,说明理由;
(2)点
在线段
上,若二面角
的大小是
,求
的长;
(3)点
在对角线
上,使
平面
,求
。
![]()
19.(本小题满分12分)
设函数
(常数
且
)的定义域是
。如果对于定义域内的每一个
,都有
,那么
。
(1)证明上述命题;
(2)写出上述命题的逆命题。若逆命题正确,请加以证明;若逆命题不正确,请举出一个反例说明。
18.(本小题满分12分)
设棋子在正四面体
的表面从一个顶点移向另外三个顶点是等可能的。现抛掷骰子根据其点数决定棋子是否移动:若投出的点数是奇数,则棋子不动;若投出的点数是偶数,棋子移动到另一顶点。若棋子的初始位置在顶点
,回答下列问题。
![]()
(1)投了2次骰子,棋子才到达顶点
的概率是多少?
(2)投了3次骰子,棋子恰巧在顶点
的概率是多少?
17.(本小题满分12分)
函数
(其中
、
)的图像经过三点
、
、
。
(1)求
的值;
(2)是否存在常数
,使
恒成立?若存在,求出
,若不存在,说明理由。
16.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为
,现用分层抽样方法抽出一个容量为
的样本,样本中A种型号产品有16件.那么此样本的容量
=
。
15.
![]()
如图,向量
、
、
的长度分别是2、
、1,
、
,则
+
。
14.凸多面体是由4个三角形和5个四边形围成,则其顶点数是 。
13.不等式
的解集是
。
12.若
,定义:
,例如:
,则函数
的奇偶性是( )
A.是偶函数不是奇函数 B.是奇函数不是偶函数
C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数
第Ⅱ卷(共90分)
11.定义在区间
(
)上的函数
的值域是
,则
的最大值
和最小值
分别是( )
A.
B.
C.
D.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com