题目列表(包括答案和解析)

 0  52726  52734  52740  52744  52750  52752  52756  52762  52764  52770  52776  52780  52782  52786  52792  52794  52800  52804  52806  52810  52812  52816  52818  52820  52821  52822  52824  52825  52826  52828  52830  52834  52836  52840  52842  52846  52852  52854  52860  52864  52866  52870  52876  52882  52884  52890  52894  52896  52902  52906  52912  52920  447348 

5.(本小题满分12分)

    已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.

  (Ⅰ)求双曲线C2的方程;

(Ⅱ)若直线与椭圆C1及双曲线C2都恒有两个不同的交点,且l与C2的两个交点A和B满足(其中O为原点),求k的取值范围.

解:(Ⅰ)设双曲线C2的方程为,则

故C2的方程为

(II)将

由直线l与椭圆C1恒有两个不同的交点得

即        ①

.

由直线l与双曲线C2恒有两个不同的交点A,B得

      

解此不等式得

     ③

由①、②、③得

故k的取值范围为

试题详情

4.(本小题满分14分)

已知动圆过定点,且与直线相切,其中.

(I)求动圆圆心的轨迹的方程;

(II)设A、B是轨迹上异于原点的两个不同点,直线的倾斜角分别为,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.

解:(I)如图,设为动圆圆心,为记为,过点作直线的垂线,垂足为,由题意知:即动点到定点与定直线的距离相等,由抛物线的定义知,点的轨迹为抛物线,其中为焦点,为准线,所以轨迹方程为

(II)如图,设,由题意得(否则)且所以直线的斜率存在,设其方程为,显然,将联立消去,得由韦达定理知

(1)当时,即时,所以所以由①知:所以因此直线的方程可表示为,即所以直线恒过定点

(2)当时,由,得==

将①式代入上式整理化简可得:,所以

此时,直线的方程可表示为

所以直线恒过定点

所以由(1)(2)知,当时,直线恒过定点,当时直线恒过定点.

试题详情

3.(本小题满分12分)

已知数列的首项项和为,且

(I)证明数列是等比数列;

(II)令,求函数在点处的导数并比较的大小.

解:由已知可得两式相减得

从而所以所以从而

故总有从而即数列是等比数列;

(II)由(I)知

因为所以

从而=

=-=

由上-=

=12

时,①式=0所以

时,①式=-12所以

时,

所以即①从而

试题详情

2.(本小题满分12分)

    函数在区间(0,+∞)内可导,导函数是减函数,且

是曲线在点()得的切线方程,并设函数

  (Ⅰ)用表示m;

  (Ⅱ)证明:当

  (Ⅲ)若关于的不等式上恒成立,其中a、b为实数,

     求b的取值范围及a与b所满足的关系.

本小题考查导数概念的几何意义,函数极值、最值的判定以及灵活运用数形结合的思想判断函数之间的大小关系.考查学生的学习能力、抽象思维能力及综合运用数学基本关系解决问题的能力.满分12分

  (Ⅰ)解:…………………………………………2分

  (Ⅱ)证明:令

     因为递减,所以递增,因此,当

     当.所以唯一的极值点,且是极小值点,可知

最小值为0,因此…………………………6分

  (Ⅲ)解法一:是不等式成立的必要条件,以下讨论设此条件成立.

     对任意成立的充要条件是

    

    另一方面,由于满足前述题设中关于函数的条件,利用(II)的结果可知,的充要条件是:过点(0,)与曲线相切的直线的斜率大于,该切线的方程为

    于是的充要条件是…………………………10分

    综上,不等式对任意成立的充要条件是

                          ①

    显然,存在a、b使①式成立的充要条件是:不等式

    有解、解不等式②得              ③

    因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.…………12分

(Ⅲ)解法二:是不等式成立的必要条件,以下讨论设此条件成立.

    对任意成立的充要条件是

     ………………………………………………………………8分

    令,于是对任意成立的充要条件是

     由

    当时,,所以,当时,取最小值.因此成立的充要条件是,即………………10分

    综上,不等式对任意成立的充要条件是

         ①

    显然,存在a、b使①式成立的充要条件是:不等式  ②

    有解、解不等式②得

    因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.…………12分

试题详情

1.(本小题满分14分)

已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足

  (Ⅰ)设为点P的横坐标,证明

  (Ⅱ)求点T的轨迹C的方程;

  (Ⅲ)试问:在点T的轨迹C上,是否存在点M,

     使△F1MF2的面积S=若存在,求∠F1MF2

        的正切值;若不存在,请说明理由.

本小题主要考查平面向量的概率,椭圆的定义、标准方程和有关性质,轨迹的求法和应用,以及综合运用数学知识解决问题的能力.满分14分.

(Ⅰ)证法一:设点P的坐标为

由P在椭圆上,得

,所以 ………………………3分

证法二:设点P的坐标为

证法三:设点P的坐标为椭圆的左准线方程为

    由椭圆第二定义得,即

    由,所以…………………………3分

(Ⅱ)解法一:设点T的坐标为

      当时,点(,0)和点(-,0)在轨迹上.

当|时,由,得.

,所以T为线段F2Q的中点.

在△QF1F2中,,所以有

综上所述,点T的轨迹C的方程是…………………………7分

解法二:设点T的坐标为时,点(,0)和点(-,0)在轨迹上.

    当|时,由,得.

    又,所以T为线段F2Q的中点.

    设点Q的坐标为(),则

    因此              ①

    由     ②

    将①代入②,可得

    综上所述,点T的轨迹C的方程是……………………7分



 
  (Ⅲ)解法一:C上存在点M()使S=的充要条件是

    

    由③得,由④得  所以,当时,存在点M,使S=

    当时,不存在满足条件的点M.………………………11分

    当时,

    由

   

    ,得

解法二:C上存在点M()使S=的充要条件是



 
    

    由④得  上式代入③得

    于是,当时,存在点M,使S=

    当时,不存在满足条件的点M.………………………11分

    当时,记

    由,所以…………14分

试题详情

7.(本题满分18分)本题共有3个小题,第1小题满分4分, 第2小题满分8分, 第3小题满分6分.

   在直角坐标平面中,已知点P1(1,2),P2(2,22),┄,Pn(n,2n),其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点, A2为A1关于点P2的对称点, ┄, AN为AN-1关于点PN的对称点.

   (1)求向量的坐标;

   (2)当点A0在曲线C上移动时, 点A2的轨迹是函数y=f(x)的图象,其中f(x)是以3为周期的周期函数,且当x∈(0,3]时,f(x)=lgx.求以曲线C为图象的函数在(1,4]上的解析式;

   (3)对任意偶数n,用n表示向量的坐标.

[解](1)设点A0(x,y), A0为P1关于点的对称点A0的坐标为(2-x,4-y),

  A1为P2关于点的对称点A2的坐标为(2+x,4+y),

  ∴={2,4}.

  (2) ∵={2,4},

∴f(x)的图象由曲线C向右平移2个单位,再向上平移4个单位得到.

因此, 曲线C是函数y=g(x)的图象,其中g(x)是以3为周期的周期函数,且当x∈(-2,1]时,g(x)=lg(x+2)-4.于是,当x∈(1,4]时,g(x)=lg(x-1)-4.

另解设点A0(x,y), A2(x2,y2),于是x2-x=2,y2-y=4,

若3< x2≤6,则0< x2-3≤3,于是f(x2)=f(x2-3)=lg(x2-3).

当1< x≤4时, 则3< x2≤6,y+4=lg(x-1).

∴当x∈(1,4]时,g(x)=lg(x-1)-4.

(3) =,

由于,得

 =2()=2({1,2}+{1,23}+┄+{1,2n-1})=2{,}={n,}

试题详情

6.(本题满分16分)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分.

   对定义域分别是Df、Dg的函数y=f(x) 、y=g(x),

            f(x)·g(x)   当x∈Df且x∈Dg

   规定: 函数h(x)=  f(x)     当x∈Df且xDg

            g(x)     当xDf且x∈Dg

(1)  若函数f(x)=,g(x)=x2,x∈R,写出函数h(x)的解析式;

(2)  求问题(1)中函数h(x)的值域;

(3)若g(x)=f(x+α), 其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos4x,并予以证明.

 [解] (1)h(x)=     x∈(-∞,1)∪(1,+∞)

         1       x=1

  (2) 当x≠1时, h(x)= =x-1++2,

    若x>1时, 则h(x)≥4,其中等号当x=2时成立

若x<1时, 则h(x)≤ 0,其中等号当x=0时成立

∴函数h(x)的值域是(-∞,0] {1}∪[4,+∞)

(3)令 f(x)=sin2x+cos2x,α=

则g(x)=f(x+α)= sin2(x+)+cos2(x+)=cos2x-sin2x,

于是h(x)= f(x)·f(x+α)= (sin2x+co2sx)( cos2x-sin2x)=cos4x.

另解令f(x)=1+sin2x, α=,

g(x)=f(x+α)= 1+sin2(x+π)=1-sin2x,

于是h(x)= f(x)·f(x+α)= (1+sin2x)( 1-sin2x)=cos4x.

试题详情

5.已知函数的图象关于原点对称,且

  (Ⅰ)求函数的解析式;

  (Ⅱ)解不等式

  (Ⅲ)若上是增函数,求实数的取值范围.

本题主要考查函数图象的对称、二次函数的基本性质与不等式的应用等基础知识,以及综合运用所学知识分析和解决问题的能力.满分14分.

解:(Ⅰ)设函数的图象上任意一点关于原点的对称点为,则

∵点在函数的图象上

(Ⅱ)由

时,,此时不等式无解.

时,,解得.

因此,原不等式的解集为.

(Ⅲ)

ⅰ)

ⅱ)

试题详情

4.如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1.

  (Ⅰ)求椭圆的方程;

  (Ⅱ)若点P为l上的动点,求∠F1PF2最大值.

本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.

解:(Ⅰ)设椭圆方程为,半焦距为,则

(Ⅱ)

试题详情

3.(本小题满分14分)

    已知不等式为大于2的整数,表示不超过的最大整数. 设数列的各项为正,且满足

  (Ⅰ)证明

(Ⅱ)猜测数列是否有极限?如果有,写出极限的值(不必证明);

(Ⅲ)试确定一个正整数N,使得当时,对任意b>0,都有

本小题主要考查数列、极限及不等式的综合应用以及归纳递推的思想.

  (Ⅰ)证法1:∵当

 

于是有 

所有不等式两边相加可得 

由已知不等式知,当n≥3时有,

证法2:设,首先利用数学归纳法证不等式

  (i)当n=3时,  由

知不等式成立.

(ii)假设当n=k(k≥3)时,不等式成立,即

即当n=k+1时,不等式也成立.

由(i)、(ii)知,

又由已知不等式得 

  (Ⅱ)有极限,且

  (Ⅲ)∵

则有

故取N=1024,可使当n>N时,都有

试题详情


同步练习册答案