题目列表(包括答案和解析)
5.(本小题满分12分)
已知椭圆C1的方程为
,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(Ⅰ)求双曲线C2的方程;
(Ⅱ)若直线
与椭圆C1及双曲线C2都恒有两个不同的交点,且l与C2的两个交点A和B满足
(其中O为原点),求k的取值范围.
解:(Ⅰ)设双曲线C2的方程为
,则![]()
故C2的方程为![]()
(II)将![]()
由直线l与椭圆C1恒有两个不同的交点得
![]()
即
①
.
由直线l与双曲线C2恒有两个不同的交点A,B得
![]()
![]()
![]()
解此不等式得
③
由①、②、③得
![]()
故k的取值范围为![]()
4.(本小题满分14分)
已知动圆过定点
,且与直线
相切,其中
.
(I)求动圆圆心
的轨迹的方程;
(II)设A、B是轨迹
上异于原点
的两个不同点,直线
和
的倾斜角分别为
和
,当
变化且
为定值
时,证明直线
恒过定点,并求出该定点的坐标.
解:(I)如图,设
为动圆圆心,
为记为
,过点
作直线
的垂线,垂足为
,由题意知:
即动点
到定点
与定直线
的距离相等,由抛物线的定义知,点
的轨迹为抛物线,其中
为焦点,
为准线,所以轨迹方程为
;
(II)如图,设
,由题意得
(否则
)且
所以直线
的斜率存在,设其方程为
,显然
,将
与
联立消去
,得
由韦达定理知
①
(1)当
时,即
时,
所以
,
所以
由①知:
所以
因此直线
的方程可表示为
,即
所以直线
恒过定点![]()
(2)当
时,由
,得
=
=
将①式代入上式整理化简可得:
,所以
,
此时,直线
的方程可表示为![]()
即![]()
所以直线
恒过定点![]()
所以由(1)(2)知,当
时,直线
恒过定点
,当
时直线
恒过定点
.
3.(本小题满分12分)
已知数列
的首项
前
项和为
,且![]()
(I)证明数列
是等比数列;
(II)令
,求函数
在点
处的导数
并比较
与
的大小.
解:由已知
可得
两式相减得
即
从而
当
时
所以
又
所以
从而![]()
故总有
,
又
从而
即数列
是等比数列;
(II)由(I)知![]()
因为
所以![]()
从而
=![]()
=
-
=![]()
由上
-
=
=12
①
当
时,①式=0所以
;
当
时,①式=-12
所以![]()
当
时,![]()
又![]()
![]()
![]()
所以
即①
从而![]()
![]()
![]()
2.(本小题满分12分)
函数
在区间(0,+∞)内可导,导函数
是减函数,且
设
是曲线
在点(
)得的切线方程,并设函数![]()
(Ⅰ)用
、
、
表示m;
(Ⅱ)证明:当
;
(Ⅲ)若关于
的不等式
上恒成立,其中a、b为实数,
求b的取值范围及a与b所满足的关系.
本小题考查导数概念的几何意义,函数极值、最值的判定以及灵活运用数形结合的思想判断函数之间的大小关系.考查学生的学习能力、抽象思维能力及综合运用数学基本关系解决问题的能力.满分12分
(Ⅰ)解:
…………………………………………2分
(Ⅱ)证明:令![]()
因为
递减,所以
递增,因此,当
;
当
.所以
是
唯一的极值点,且是极小值点,可知
的
最小值为0,因此
即
…………………………6分
(Ⅲ)解法一:
,
是不等式成立的必要条件,以下讨论设此条件成立.
对任意
成立的充要条件是
![]()
另一方面,由于
满足前述题设中关于函数
的条件,利用(II)的结果可知,
的充要条件是:过点(0,
)与曲线
相切的直线的斜率大于
,该切线的方程为![]()
于是
的充要条件是
…………………………10分
综上,不等式
对任意
成立的充要条件是
①
显然,存在a、b使①式成立的充要条件是:不等式
②
有解、解不等式②得
③
因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.…………12分
(Ⅲ)解法二:
是不等式成立的必要条件,以下讨论设此条件成立.
对任意
成立的充要条件是
………………………………………………………………8分
令
,于是
对任意
成立的充要条件是
由![]()
当
时
当
时,
,所以,当
时,
取最小值.因此
成立的充要条件是
,即
………………10分
综上,不等式
对任意
成立的充要条件是
①
显然,存在a、b使①式成立的充要条件是:不等式
②
有解、解不等式②得![]()
因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.…………12分
1.(本小题满分14分)
已知椭圆
的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足
点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足![]()
(Ⅰ)设
为点P的横坐标,证明
;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,
使△F1MF2的面积S=
若存在,求∠F1MF2
的正切值;若不存在,请说明理由.
本小题主要考查平面向量的概率,椭圆的定义、标准方程和有关性质,轨迹的求法和应用,以及综合运用数学知识解决问题的能力.满分14分.
(Ⅰ)证法一:设点P的坐标为![]()
由P
在椭圆上,得
![]()
由
,所以
………………………3分
证法二:设点P的坐标为
记![]()
则![]()
由![]()
证法三:设点P的坐标为
椭圆的左准线方程为![]()
由椭圆第二定义得
,即![]()
由
,所以
…………………………3分
(Ⅱ)解法一:设点T的坐标为
当
时,点(
,0)和点(-
,0)在轨迹上.
当|
时,由
,得
.
又
,所以T为线段F2Q的中点.
在△QF1F2中,
,所以有![]()
综上所述,点T的轨迹C的方程是
…………………………7分
解法二:设点T的坐标为
当
时,点(
,0)和点(-
,0)在轨迹上.
当|
时,由
,得
.
又
,所以T为线段F2Q的中点.
设点Q的坐标为(
),则![]()
因此
①
由
得
②
将①代入②,可得![]()
综上所述,点T的轨迹C的方程是
……………………7分
|
![]()
由③得
,由④得
所以,当
时,存在点M,使S=
;
当
时,不存在满足条件的点M.………………………11分
当
时,
,
由
,
,
,得![]()
解法二:C上存在点M(
)使S=
的充要条件是
|
由④得
上式代入③得![]()
于是,当
时,存在点M,使S=
;
当
时,不存在满足条件的点M.………………………11分
当
时,记
,
由
知
,所以
…………14分
7.(本题满分18分)本题共有3个小题,第1小题满分4分, 第2小题满分8分, 第3小题满分6分.
在直角坐标平面中,已知点P1(1,2),P2(2,22),┄,Pn(n,2n),其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点, A2为A1关于点P2的对称点, ┄, AN为AN-1关于点PN的对称点.
(1)求向量
的坐标;
(2)当点A0在曲线C上移动时, 点A2的轨迹是函数y=f(x)的图象,其中f(x)是以3为周期的周期函数,且当x∈(0,3]时,f(x)=lgx.求以曲线C为图象的函数在(1,4]上的解析式;
(3)对任意偶数n,用n表示向量
的坐标.
[解](1)设点A0(x,y), A0为P1关于点的对称点A0的坐标为(2-x,4-y),
A1为P2关于点的对称点A2的坐标为(2+x,4+y),
∴
={2,4}.
(2) ∵
={2,4},
∴f(x)的图象由曲线C向右平移2个单位,再向上平移4个单位得到.
因此, 曲线C是函数y=g(x)的图象,其中g(x)是以3为周期的周期函数,且当x∈(-2,1]时,g(x)=lg(x+2)-4.于是,当x∈(1,4]时,g(x)=lg(x-1)-4.
另解设点A0(x,y), A2(x2,y2),于是x2-x=2,y2-y=4,
若3< x2≤6,则0< x2-3≤3,于是f(x2)=f(x2-3)=lg(x2-3).
当1< x≤4时, 则3< x2≤6,y+4=lg(x-1).
∴当x∈(1,4]时,g(x)=lg(x-1)-4.
(3)
=
,
由于
,得
=2(
)=2({1,2}+{1,23}+┄+{1,2n-1})=2{
,
}={n,
}
6.(本题满分16分)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分.
对定义域分别是Df、Dg的函数y=f(x) 、y=g(x),
f(x)·g(x) 当x∈Df且x∈Dg
规定:
函数h(x)= f(x)
当x∈Df且x
Dg
g(x) 当x
Df且x∈Dg
(1) 若函数f(x)=
,g(x)=x2,x∈R,写出函数h(x)的解析式;
(2) 求问题(1)中函数h(x)的值域;
(3)若g(x)=f(x+α), 其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos4x,并予以证明.
[解] (1)h(x)=
x∈(-∞,1)∪(1,+∞)
1 x=1
(2) 当x≠1时,
h(x)=
=x-1+
+2,
若x>1时, 则h(x)≥4,其中等号当x=2时成立
若x<1时, 则h(x)≤ 0,其中等号当x=0时成立
∴函数h(x)的值域是(-∞,0] {1}∪[4,+∞)
(3)令 f(x)=sin2x+cos2x,α=![]()
则g(x)=f(x+α)=
sin2(x+
)+cos2(x+
)=cos2x-sin2x,
于是h(x)= f(x)·f(x+α)= (sin2x+co2sx)( cos2x-sin2x)=cos4x.
另解令f(x)=1+
sin2x, α=
,
g(x)=f(x+α)= 1+
sin2(x+π)=1-
sin2x,
于是h(x)=
f(x)·f(x+α)= (1+
sin2x)( 1-
sin2x)=cos4x.
5.已知函数
和
的图象关于原点对称,且
.
(Ⅰ)求函数
的解析式;
(Ⅱ)解不等式
;
(Ⅲ)若
在
上是增函数,求实数
的取值范围.
本题主要考查函数图象的对称、二次函数的基本性质与不等式的应用等基础知识,以及综合运用所学知识分析和解决问题的能力.满分14分.
解:(Ⅰ)设函数
的图象上任意一点
关于原点的对称点为
,则
![]()
∵点
在函数
的图象上
∴![]()
(Ⅱ)由![]()
当
时,
,此时不等式无解.
当
时,
,解得
.
因此,原不等式的解集为
.
(Ⅲ)![]()
①![]()
![]()
②![]()
ⅰ)![]()
ⅱ)![]()
![]()
4.如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1.
(Ⅰ)求椭圆的方程;
(Ⅱ)若点P为l上的动点,求∠F1PF2最大值.
本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.
解:(Ⅰ)设椭圆方程为
,半焦距为
,则
![]()
(Ⅱ)![]()
![]()
3.(本小题满分14分)
已知不等式
为大于2的整数,
表示不超过
的最大整数. 设数列
的各项为正,且满足![]()
(Ⅰ)证明![]()
(Ⅱ)猜测数列
是否有极限?如果有,写出极限的值(不必证明);
(Ⅲ)试确定一个正整数N,使得当
时,对任意b>0,都有![]()
本小题主要考查数列、极限及不等式的综合应用以及归纳递推的思想.
(Ⅰ)证法1:∵当![]()
即
于是有 ![]()
所有不等式两边相加可得 ![]()
由已知不等式知,当n≥3时有,![]()
∵![]()
证法2:设
,首先利用数学归纳法证不等式
![]()
(i)当n=3时, 由 ![]()
知不等式成立.
(ii)假设当n=k(k≥3)时,不等式成立,即![]()
则![]()
![]()
即当n=k+1时,不等式也成立.
由(i)、(ii)知,![]()
又由已知不等式得 ![]()
(Ⅱ)有极限,且![]()
(Ⅲ)∵![]()
则有![]()
故取N=1024,可使当n>N时,都有![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com