题目列表(包括答案和解析)

 0  52725  52733  52739  52743  52749  52751  52755  52761  52763  52769  52775  52779  52781  52785  52791  52793  52799  52803  52805  52809  52811  52815  52817  52819  52820  52821  52823  52824  52825  52827  52829  52833  52835  52839  52841  52845  52851  52853  52859  52863  52865  52869  52875  52881  52883  52889  52893  52895  52901  52905  52911  52919  447348 

2.(本小题满分12分)

    设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.

  (Ⅰ)确定的取值范围,并求直线AB的方程;

(Ⅱ)试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由.

     (此题不要求在答题卡上画图)

本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.

  (Ⅰ)解法1:依题意,可设直线AB的方程为,整理得  ①

   设是方程①的两个不同的根,

   ∴  ②

   且由N(1,3)是线段AB的中点,得

  

   解得k=-1,代入②得,的取值范围是(12,+∞).

   于是,直线AB的方程为

   解法2:设则有

  

   依题意,

∵N(1,3)是AB的中点,  ∴

又由N(1,3)在椭圆内,∴

的取值范围是(12,+∞).

直线AB的方程为y-3=-(x-1),即x+y-4=0.

  (Ⅱ)解法1:∵CD垂直平分AB,∴直线CD的方程为y-3=x-1,即x-y+2=0,

代入椭圆方程,整理得 

又设CD的中点为是方程③的两根,

于是由弦长公式可得   ④

将直线AB的方程x+y-4=0,代入椭圆方程得  ⑤

同理可得   ⑥

∵当时,

假设存在>12,使得A、B、C、D四点共圆,则CD必为圆的直径,点M为圆心.

点M到直线AB的距离为  ⑦

于是,由④、⑥、⑦式和勾股定理可得

故当>12时,A、B、C、D四点匀在以M为圆心,为半径的圆上.

  (注:上述解法中最后一步可按如下解法获得:)

A、B、C、D共圆△ACD为直角三角形,A为直角|AN|2=|CN|·|DN|,

  ⑧

由⑥式知,⑧式左边

由④和⑦知,⑧式右边

∴⑧式成立,即A、B、C、D四点共圆.

解法2:由(Ⅱ)解法1及λ>12,

∵CD垂直平分AB, ∴直线CD方程为,代入椭圆方程,整理得

  ③

将直线AB的方程x+y-4=0,代入椭圆方程,整理得

  ⑤

解③和⑤式可得 

不妨设

计算可得,∴A在以CD为直径的圆上.

又B为A关于CD的对称点,∴A、B、C、D四点共圆.

(注:也可用勾股定理证明AC⊥AD)

试题详情

1.(本小题满分14分)

如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.

(1)求△APB的重心G的轨迹方程.

(2)证明∠PFA=∠PFB.

解:(1)设切点A、B坐标分别为

∴切线AP的方程为:

  切线BP的方程为:

解得P点的坐标为:

所以△APB的重心G的坐标为

所以,由点P在直线l上运动,从而得到重心G的轨迹方程为:

  (2)方法1:因为

由于P点在抛物线外,则

同理有

∴∠AFP=∠PFB.

方法2:①当所以P点坐标为,则P点到直线AF的距离为:

所以P点到直线BF的距离为:

所以d1=d2,即得∠AFP=∠PFB.

②当时,直线AF的方程:

直线BF的方程:

所以P点到直线AF的距离为:

,同理可得到P点到直线BF的距离,因此由d1=d2,可得到∠AFP=∠PFB.

试题详情

22、某“帆板”集训队在一海滨区域进行集训,该海滨区域的海浪高度(米)随着时间而周期性变化,每天各时刻的浪高数据的平均值如下表:


0
3
6
9
12
15
18
21
24

1.0
1.4
1.0
0.6
1.0
1.4
0.9
0.5
1.0

(Ⅰ)试画出散点图;

(Ⅱ)观察散点图,从中选择一个合适的函数模型,并求出该拟合模型的解析式;

(Ⅲ)如果确定在白天7时~19时当浪高不低于0。8米时才进行训练,试安排恰当的训练时间。

试题详情

21、已知

(1)求的值;

(2)求函数的最大值.

试题详情

20、已知

(Ⅰ)求函数的最小正周期;(Ⅱ) 当,求函数的零点.

试题详情

19、已知函数

(Ⅰ)求函数的最小正周期和图象的对称轴方程

(Ⅱ)求函数在区间上的值域

试题详情

18、已知函数

  (Ⅰ)求函数的最小正周期和单调递减区间;

  (Ⅱ)在所给坐标系中画出函数在区间的图象

(只作图不写过程).

试题详情

17、在△中,角所对的边分别为,已知.(1)求的值;(2)求的值.

试题详情

16、已知,且在区间有最小值,无最大值,则=__________.

试题详情

15、设,则函数的最小值为     

试题详情


同步练习册答案