题目列表(包括答案和解析)

 0  50678  50686  50692  50696  50702  50704  50708  50714  50716  50722  50728  50732  50734  50738  50744  50746  50752  50756  50758  50762  50764  50768  50770  50772  50773  50774  50776  50777  50778  50780  50782  50786  50788  50792  50794  50798  50804  50806  50812  50816  50818  50822  50828  50834  50836  50842  50846  50848  50854  50858  50864  50872  447348 

4、  递增(减)、摆动、循环数列:

试题详情

3、  有穷数列与无穷数列:

试题详情

2、  数列的项与项数:

试题详情

1、  数列的定义及表示方法:

试题详情

本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前项和,则其通项为满足则通项公式可写成.(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标.   ①函数思想:等差等比数列的通项公式求和公式都可以看作是的函数,所以等差等比数列的某些问题可以化为函数问题求解.

②分类讨论思想:用等比数列求和公式应分为;已知时,也要进行分类;

③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整

体思想求解.

(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.

试题详情

(1)一元一次不等式:

Ⅰ、:⑴若,则     ;⑵若,则    

Ⅱ、:⑴若,则     ;⑵若,则    

(2)一元二次不等式: 一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对进行讨论:

(5)绝对值不等式:若,则             

注意:(1).几何意义:                

(2)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有

⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;①若   ;②若   ;③若  

(3).通过两边平方去绝对值;需要注意的是不等号两边为非负值。

(4).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。

(6)分式不等式的解法:通解变形为整式不等式;

          ;⑵         

          ;⑷         

(7)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。

(8)解含有参数的不等式

解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:

①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.

②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.

③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为(或更多)但含参数,要分讨论。

试题详情

(1)比较法:作差比较:

作差比较的步骤:

⑴作差:对要比较大小的两个数(或式)作差。

⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。

⑶判断差的符号:结合变形的结果及题设条件判断差的符号。

注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。

(2)综合法:由因导果。

(3)分析法:执果索因。基本步骤:要证……只需证……,只需证……

(4)反证法:正难则反。

(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。

放缩法的方法有:

⑴添加或舍去一些项,如:

⑵将分子或分母放大(或缩小)

⑶利用基本不等式,如:

⑷利用常用结论

Ⅰ、

Ⅱ、(程度大)

Ⅲ、 ; (程度小)

(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。如:

已知,可设

已知,可设();

已知,可设

已知,可设

(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;

试题详情

(1)设,则(当且仅当        时取等号)

(2)(当且仅当     时取等号);(当且仅当     时取等号)

(3)        

试题详情

注意:上述等号“=”成立的条件;

试题详情

,则(当且仅当时取等号)

基本变形:①             

②若,则

基本应用:①放缩,变形;

②求函数最值:注意:①一正二定三取等;②积定和小,和定积大。

(常数),当且仅当      时,        

(常数),当且仅当      时,        

常用的方法为:拆、凑、平方;

如:①函数的最小值      

②若正数满足,则的最小值           

试题详情


同步练习册答案