(Ⅱ)证明曲线C与C1关于点A(
)对称;
86.(1998全国理,24)设曲线C的方程是y=x3-x,将C沿x轴、y轴正向分别平行移动t、s单位长度后得曲线C1.
(Ⅰ)写出曲线C1的方程;
85.(1999上海,22)设椭圆C1的方程为
=1(a>b>0),曲线C2的方程为y=
,且C1与C2在第一象限内只有一个公共点P.
(Ⅰ)试用a表示点P的坐标.
(Ⅱ)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;
(Ⅲ)设min{y1,y2,…,yn}为y1,y2,…,yn中最小的一个.设g(a)是以椭圆C1的半焦距为边长的正方形的面积,求函数f(a)=min{g(a),S(a)}的表达式.
84.(1999全国,24)如图8―8,给出定点A(a,0)(a>0)和直线l:x=-1.B是直线l上的动点,∠BOA的角平分线交AB于点C.求点C的轨迹方程,并讨论方程表示的曲线类型与a值的关系.
注:文科题设还有条件a≠1
83.(2000上海,17)已知椭圆C的焦点分别为F1(
,0)和F2(2
,0),长轴长为6,设直线y=x+2交椭圆C于A、B两点,求线段AB的中点坐标.
82.(2000全国文,22)如图8―7,已知梯形ABCD中|AB|=2|CD|,点E分有向线段
所成的比为
,双曲线过C、D、E三点,且以A、B为焦点.求双曲线离心率.
![]()
图8―5 图8―6 图8―7
81.(2000全国理,22)如图8―6,已知梯形ABCD中,|AB|=2|CD|,点E分有向线段
所成的比为λ,双曲线过C、D、E三点,且以A、B为焦点.当
≤λ≤
时,求双曲线离心率e的取值范围.
80.(2000京皖春,23)如图8―5,设点A和B为抛物线y2=4px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M的轨迹方程,并说明它表示什么曲线.
79.(2000上海春,22)如图8―4所示,A、F分别是椭圆
=1的一个顶点与一个焦点,位于x轴的正半轴上的动点T(t,0)与F的连线交射影OA于Q.求:
(1)点A、F的坐标及直线TQ的方程;
(2)△OTQ的面积S与t的函数关系式S=f(t)及其函数的最小值;
(3)写出S=f(t)的单调递增区间,并证明之.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com