78.(2001广东河南21)已知椭圆
+y2=1的右准线l与x轴相交于点E,过椭圆右焦点F的直线与椭圆相交于A、B两点,点C在右准线l上,且BC∥x轴.
求证:直线AC经过线段EF的中点.
77.(2001上海春,21)已知椭圆C的方程为x2+
=1,点P(a,b)的坐标满足a2+
≤1,过点P的直线l与椭圆交于A、B两点,点Q为线段AB的中点,求:
(1)点Q的轨迹方程;
(2)点Q的轨迹与坐标轴的交点的个数.
76.(2001全国文20,理19)设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直线AC经过原点O.
75.(2001上海文,理,18)设F1、F2为椭圆
=1的两个焦点,P为椭圆上的一点.已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,求
的值.
74.(2001京皖春,22)已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.
(Ⅰ)求a的取值范围;
(Ⅱ)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.
73.(2002上海,18)已知点A(
,0)和B(
,0),动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与直线y=x-2交于D、E两点,求线段DE的长.
72.(2002江苏,20)设A、B是双曲线x2
=1上的两点,点N(1,2)是线段AB的中点.
(Ⅰ)求直线AB的方程;
(Ⅱ)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆,为什么?
71.(2002北京,21)已知O(0,0),B(1,0),C(b,c)是△OBC的三个顶点.如图8―3.
(Ⅰ)写出△OBC的重心G,外心F,垂心H的坐标,并证明G、F、H三点共线;
(Ⅱ)当直线FH与OB平行时,求顶点C的轨迹.
70.(2002全国理,19)设点P到点M(-1,0)、N(1,0)距离之差为
69.(2002京皖文,理,22)已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10.椭圆上不同的两点A(x1,y1)、C(x2,y2)满足条件:|F
(Ⅰ)求该椭圆的方程;
(Ⅱ)求弦AC中点的横坐标;
(Ⅲ)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com