题目列表(包括答案和解析)

 0  51647  51655  51661  51665  51671  51673  51677  51683  51685  51691  51697  51701  51703  51707  51713  51715  51721  51725  51727  51731  51733  51737  51739  51741  51742  51743  51745  51746  51747  51749  51751  51755  51757  51761  51763  51767  51773  51775  51781  51785  51787  51791  51797  51803  51805  51811  51815  51817  51823  51827  51833  51841  447348 

1.    将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩

具)先后抛掷3次,至少出现一次6点向上的概率是 (   )  

(A)    (B)     (C)     (D)

试题详情

6.解: =0.752

第三课时

例题

例1  从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为,每位男同学能通过测验的概率均为.试求:

(Ⅰ)选出的3位同学中,至少有一位男同学的概率;

(Ⅱ)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.

 (2004年全国卷Ⅰ)

例2  已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支.求:

(Ⅰ)A、B两组中有一组恰有两支弱队的概率;

(Ⅱ)A组中至少有两支弱队的概率.   (2004年全国卷Ⅱ)

例3  某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.

(Ⅰ)求这名同学得300分的概率;

(Ⅱ)求这名同学至少得300分的概率.  (2004年全国卷Ⅲ)

例4  从4名男生和2名女生中任选3人参加演讲比赛.

(Ⅰ)求所选3人都是男生的概率;

(Ⅱ)求所选3人中恰有1名女生的概率;

(Ⅲ)求所选3人中至少有1名女生的概率.  (2004年天津卷)

备用  A、B、C、D、E五人分四本不同的书,每人至多分一本,求:

(1)A不分甲书,B不分乙书的概率;

(2)甲书不分给A、B,乙书不分给C的概率。

解: (1)分别记“分不到书的是A,B不分乙书”,“分不到书的是B,A不分甲书”,“分不到书的是除A,B以外的其余的三人中的一人,同时A不分甲书,B不分乙书”为事件A1,B1,C1,它们的概率是

.

因为事件A1,B1,C1彼此互斥,由互斥事件的概率加法公式,A不分甲书,B不分乙书的概率是:

(2) 在乙书不分给C的情况下,分别记“甲书分给C”,“甲书分给D”,“甲书分给E”为事件A2,B2,C2彼此互斥,有互斥事件的概率加法公式,甲书不分给A,B,乙书不分给C的概率为:

 

作业

试题详情

1. D   2. A  3.  4.   5.解:有两种可能:将原1件次品仍鉴定为次品,原3件正品中1件错误地鉴定为次品;将原1件次品错误地鉴定为正品,原3件正品中的2件错误地鉴定为次品.  概率为

P==0.1998

试题详情

1. (Ⅰ) ; (Ⅱ).   2. 0.648; 0.792.   3. (Ⅰ) ; (Ⅱ) 5人.   4. (Ⅰ) 0.176 ; (Ⅱ) 0.012 .

作业答案

试题详情

6. 如图,用表示四类不同的元件连接成系统.当元件至少有一个正常工作且元件至少有一个正常工作时,系统

正常工作.已知元件正常工作的概率

依次为0.5,0.6,0.7,0.8,求元件连接成的系

正常工作的概率.

例题答案

试题详情

5. 某产品检验员检查每一件产品时,将正品错误地鉴定为次品的概率为0.1,将次口错误地鉴定为正品的概率为0.2,如果这位检验员要鉴定4件产品,这4件产品中3件是正品,1件是次品,试求检验员鉴定成正品,次品各2件的概率.

试题详情

4. 某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女

生当选的概率是           (用分数作答)

试题详情

3. 有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1、2和

3,现任取出3面,它们的颜色与号码不相同的概率是           .

试题详情

2. 种植两株不同的花卉,它们的存活率分别为pq,则恰有一株存活的概率为 (   )

(A)  p+q-2p q     (B)  p+qpq    (C)  p+q    (D)  pq

试题详情

1.    一台X型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自

动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是 (   )    

(A)0.1536      (B) 0.1808    (C) 0.5632     (D) 0.9728

试题详情


同步练习册答案