题目列表(包括答案和解析)
7.函数y=-(x-3)|x|的递增区间是________.
解析:y=-(x-3)|x|
=
作出该函数的图象,观察图象知递增区间为[0,].
答案:[0,]
6.已知定义在R上的奇函数f(x)满足f(1+x)=f(1-x),且f(x)在区间[3,5]上单调递增,则函数f(x)在区间[1,3]上的( )
A.最大值是f(1),最小值是f(3)
B.最大值是f(3),最小值是f(1)
C.最大值是f(1),最小值是f(2)
D.最大值是f(2),最小值是f(3)
解析:依题意得f(x)的图象关于直线x=1对称,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函数f(x)是以4为周期的函数.由f(x)在[3,5]上是增函数与f(x)的图象关于直线x=1对称得,f(x)在[-3,-1]上是减函数.又函数f(x)是以4为周期的函数,因此f(x)在[1,3]上是减函数,f(x)在[1,3]上的最大值是f(1),最小值是f(3).
答案:A
5.定义在R上的偶函数f(x)满足:对任意x1,x2∈[0,+∞)(x1≠x2),有<0,则( )
A.f(3)<f(-2)<f(1) B.f(1)<f(-2)<f(3)
C.f(-2)<f(1)<f(3) D.f(3)<f(1)<f(-2)
解析:对任意x1,x2∈[0,+∞)(x1≠x2),有<0,实际上等价于函数f(x)在[0,+∞)上是减函数,故f(3)<f(2)<f(1),由于函数是偶函数,故f(3)<f(-2)<f(1).
答案:A
4.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于( )
A.-1 B.1
C.6 D.12
解析:由题意知
当-2≤x≤1时,f(x)=x-2,
当1<x≤2时,f(x)=x3-2,
又∵f(x)=x-2,f(x)=x3-2在定义域上都为增函数,
∴f(x)的最大值为f(2)=23-2=6.
答案:C
3.已知函数f(x)为R上的减函数,则满足f(|x|)<f(1)的实数x的取值范围是( )
A.(-1,1) B.(0,1)
C.(-1,0)∪(0,1) D.(-∞,-1)∪(1,+∞)
解析:∵f(x)为R上的减函数,且f(|x|)<f(1),
∴|x|>1,∴x<-1或x>1.
答案:D
2.函数y=2x2-(a-1)x+3在(-∞,1]内递减,在(1,+∞)内递增,则a的值是( )
A.1 B.3
C.5 D.-1
解析:依题意可得对称轴x==1,∴a=5.
答案:C
1.(2010·大连模拟)下列函数在(0,1)上是减函数的是( )
A.y=log0.5(1-x) B.y=x0.5
C.y=0.51-x D.y=(1-x2)
解析:y=log0.5(1-x)在(0,1)上为增函数;
y=x0.5在(0,1)上是增函数;
y=0.51-x在(0,1)上为增函数;
函数y=(1-x2)在(-∞,0)上为增函数,在(0,+∞)上为减函数,
∴函数y=(1-x2)在(0,1)上是减函数.
答案:D
12.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.
(1)求证:f(x)是周期函数;
(2)当x∈[2,4]时,求f(x)的解析式;
(3)计算f(0)+f(1)+f(2)+…+f(2 012).
解:(1)∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x).
∴f(x)是周期为4的周期函数.
(2)当x∈[-2,0]时,-x∈[0,2],由已知得
f(-x)=2(-x)-(-x)2=-2x-x2,
又f(x)是奇函数,∴f(-x)=-f(x)=-2x-x2,
∴f(x)=x2+2x.
又当x∈[2,4]时,x-4∈[-2,0],
∴f(x-4)=(x-4)2+2(x-4).
又f(x)是周期为4的周期函数,
∴f(x)=f(x-4)
=(x-4)2+2(x-4)
=x2-6x+8.
从而求得x∈[2,4]时,f(x)=x2-6x+8.
(3)f(0)=0,f(2)=0,
f(1)=1,f(3)=-1.
又f(x)是周期为4的周期函数,
∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)=0.
∴f(0)+f(1)+f(2)+…+f(2 012)=0.
11.已知函数f(x)=是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.
解:(1)设x<0,则-x>0,
所以f(-x)=-(-x)2+2(-x)=-x2-2x.
又f(x)为奇函数,所以f(-x)=-f(x),
于是x<0时,f(x)=x2+2x=x2+mx,所以m=2.
(2)要使f(x)在[-1,a-2]上单调递增,
结合f(x)的图象知
所以1<a≤3,故实数a的取值范围是(1,3].
10.判断下列函数的奇偶性.
(1)f(x)=;
(2)f(x)=
解:(1)由得定义域为(-1,0)∪(0,1),这时f(x)==-.
∵f(-x)=-=-=f(x).
∴f(x)为偶函数.
(2)当x<0时,-x>0,
则f(-x)=-(-x)2-x=-(x2+x)=-f(x)
当x>0时,-x<0,则f(-x)=(-x)2-x=x2-x=-(-x2+x)=-f(x)
∴对任意x∈(-∞,0)∪(0,+∞)都有f(-x)=-f(x)
故f(x)为奇函数.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com