题目列表(包括答案和解析)

 0  56975  56983  56989  56993  56999  57001  57005  57011  57013  57019  57025  57029  57031  57035  57041  57043  57049  57053  57055  57059  57061  57065  57067  57069  57070  57071  57073  57074  57075  57077  57079  57083  57085  57089  57091  57095  57101  57103  57109  57113  57115  57119  57125  57131  57133  57139  57143  57145  57151  57155  57161  57169  447348 

17.(本小题满分12分)已知四棱锥(如图)底面是边长为2的正方形.

平面,分别为,的中点,.

     (Ⅰ)求证:平面⊥平面

   (Ⅱ)求二面角的余弦值.

试题详情

16.(本小题满分12分)在锐角△ABC中,a, b, c分别为内角A, B, C的对边,且

  (Ⅰ)求A的大小;

(Ⅱ)求表达式的取值范围.

 

试题详情

15.(在给出的二个题中,任选一题作答. 若多选做,则

按所做的第一题给分)

 (1)(坐标系与参数方程)在极坐标系中,曲线的焦点的极坐标为       .

 (2)(不等式选讲)若不等式的解集为,且,则a的取值集合为            .

 

试题详情

14. 由函数的图像在点处的切

线直线直线(其中是自然对数的底

数)及曲线所围成的曲边四边形(如图中的阴

影部分)的面积     .

试题详情

13. 图中的三角形称为谢宾斯基(Sierpinski)三角形。在下图中,将第1个三角形的三边中点为顶点的三角形着色,将第个图形中的每个未着色三角形的三边中点为顶点的三角形着色,得到第个图形, 这样这些图形中着色三角形的个数依次构成一个数列,则数列的通项公式为         .

试题详情

12. 设圆的切线与轴的正半轴,轴的正半轴分别交于点,,当取最小值时,切线的方程为       .

试题详情

11.某校为了解高三同学寒假期间学习情况,调查了100名

同学,统计他们每天平均学习时间,绘成频率分布直方

图(如图).则这100名同学中学习时间在6至8小时

的同学为    人.

试题详情

10.已知定义域为区间的函数,其图象是一条连续不断地曲线,且满足下列条件:①的值域为,且;②对任意不同的,都有,那么函数在区间[]上(   )

A.没有零点             B.  有且只有一个零点     

C.恰有两个不同的零点       D.有无数个不同的零点 

第Ⅱ卷

试题详情

9. 已知数列满足,且,对任意的

,总有成立,则内的可能值有(   )

A.1个       B.2个      C.3个      D.4个

试题详情

8. 如下图所示,两射线交于点,下列5个向量中,

  ② 

  ⑤

若以为起点,终点落在阴影区域内(含边界)的向量有(  )个.

A.1    B. 2    C. 3    D.4

试题详情


同步练习册答案