题目列表(包括答案和解析)
4.A、B、C为已知直线上的三个定点,动点P不在此直线上,且使∠APB=∠BPC,求动点P的轨迹.
作业答案:
3.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点的轨迹方程,并说明它的轨迹是什么.
2.求经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.
1.求下列各圆的一般方程:
(1)过点A(5,1),圆心在点C(8,-3);
(2)过三点A(-1,5)、B(5,5)、C(6,-2).
(五)小结
1.圆的一般方程的定义及特点;
2.用配方法求出圆的圆心坐标和半径;
3.用待定系数法,导出圆的方程.
(四)应用与举例
同圆的标准方程(x-a)2+(y-b)2=r2一样,方程x2+y2+Dx+Ey+F=0也含有三个系数D、E、F,因此必具备三个独立的条件,才能确定一个圆.下面看一看它们的应用.
例1 求下列圆的半径和圆心坐标:
(1)x2+y2-8x+6y=0,
(2)x2+y2+2by=0.
此例由学生演板,教师纠错,并给出正确答案:(1)圆心为(4,-3),半径为5;(2)圆心为(0,-b),半径为|b|,注意半径不为b.
同时强调:由圆的一般方程求圆心坐标和半径,一般用配方法,这要熟练掌握.
例2 求过三点O(0,0)、A(1,1)、B(4,2)的圆的方程.
解:设所求圆的方程为x2+y2+Dx+Ey+F=0,由O、A、B在圆上,则有
![]()
解得:D=-8,E=6,F=0,
故所求圆的方程为x2+y2-8x+6=0.
例2小结:
1.用待定系数法求圆的方程的步骤:
(1)根据题意设所求圆的方程为标准式或一般式;
(2)根据条件列出关于a、b、r或D、E、F的方程;
(3)解方程组,求出a、b、r或D、E、F的值,代入所设方程,就得要求的方程.
2.关于何时设圆的标准方程,何时设圆的一般方程:一般说来,如果由已知条件容易求圆心的坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程;如果已知条件和圆心坐标或半径都无直接关系,往往设圆的一般方程.再看下例:
例3 求圆心在直线 l:x+y=0上,且过两圆C1∶x2+y2-2x+10y-24=0和C2∶x2+y2+2x+2y-8=0的交点的圆的方程.
![]()
(0,2).
设所求圆的方程为(x-a)2+(y-b)2=r2,因为两点在所求圆上,且圆心在直线l上所以得方程组为
![]()
![]()
故所求圆的方程为:(x+3)2+(y-3)2=10.
这时,教师指出:
(1)由已知条件容易求圆心坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程.
(2)此题也可以用圆系方程来解:
设所求圆的方程为:
x2+ y2-2x+10y-24+λ(x2+y2+2x+2y-8)=0(λ≠-1)
整理并配方得:
![]()
由圆心在直线l上得λ=-2.
将λ=-2代入所假设的方程便可得所求圆的方程为x2+y2+6x-6y+8=0.此法到圆与圆的位置关系中再介绍,此处为学生留下悬念.
![]()
的轨迹,求这个曲线的方程,并画出曲线.
此例请两位学生演板,教师巡视,并提示学生:
(1)由于曲线表示的图形未知,所以只能用轨迹法求曲线方程,设曲线上任一点M(x,y),由求曲线方程的一般步骤可求得;
(2)应将圆的一般方程配方成标准方程,进而得出圆心坐标、半径,画出图形.
(三)圆的一般方程的特点
请同学们分析下列问题:
问题:比较二元二次方程的一般形式
Ax2+Bxy+Cy2+Dx+Ey+F=0.
(2)
与圆的一般方程
x2+y2+Dx+Ey+F=0,(D2+E2-4F>0).
(3)
的系数可得出什么结论?启发学生归纳结论.
当二元二次方程 Ax2+Bxy+Cy2+Dx+Ey+F=0具有条件:
(1)x2和y2的系数相同,不等于零,即A=C≠0;
(2)没有xy项,即B=0;
(3)D2+E2-4AF>0.
它才表示圆.条件(3)通过将方程同除以A或C配方不难得出.
教师还要强调指出:
(1)条件(1)、(2)是二元二次方程(2)表示圆的必要条件,但不是充分条件;
(2)条件(1)、(2)和(3)合起来是二元二次方程(2)表示圆的充要条件.
(二)圆的一般方程的定义
1.分析方程x3+y2+Dx+Ey+F=0表示的轨迹
将方程x2+y2+Dx+Ey+F=0左边配方得:
![]()
(1)
(1)当D2+E2-4F>0时,方程(1)与标准方程比较,可以看出方程
![]()
半径的圆;
![]()
![]()
(3)当D2+E2-4F<0时,方程x2+y2+Dx+Ey+F=0没有实数解,因而它不表示任何图形.
这时,教师引导学生小结方程x2+y2+Dx+Ey+F=0的轨迹分别是圆、
![]()
法.
2.圆的一般方程的定义
当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0称为圆的一般方程.
(一)复习引入新课
前面,我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2,现将展开可得x2+y2-2ax-2by+a2+b2-r2=0.可见,任何一个圆的方程都可以写成x2+y2+Dx+Ey+F=0.请大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲线是不是圆?下面我们来深入研究这一方面的问题.复习引出课题为“圆的一般方程”.
讲授、提问、归纳、演板、小结、再讲授、再演板.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com